

Walter SALVATORE, Silvia CAPRILI, Irene PUNCELLO University of Pisa, Department of Civil and Industrial Engineering

CURVED PROFILES can be obtained through three different processes:

BY CRUSHING OF THE INNER FLANGE – Variant B

THROUGH IN SITU BENDING PROCESS – Variant C

This case (VARIANT B) is usually associated to <u>small span length</u> when adopted, and consequently not considered in the present research project.

THROUGH IN SITU BENDING PROCESS – Variant C

This case (VARIANT C) is usually associated to <u>large</u> <u>curvature/bending radius</u> applied to the profile. The design can be consequently executed following the standard prescriptions imposed by <u>Eurocode 3 (EN1993-1:2005)</u> for flat profiles.

Variants B and C were then not considered in the main framework of GRISPE project

MAIN FOCUS OF GRISPE RESEARCH PROJECT

Investigation of the structural performance of **curved profiles obtained through a continuous rollforming process (VARIANT A)**. The structural performance shall be evaluated with reference to the <u>bearing capacity of the corresponding flat profiles</u>.

ROLL-FORMING process

https://en.wikipedia.org/wiki/File:Roll _forming.png

https://en.wikipedia.org/wiki/File:Flo wer_Pattern.jpg

- Type of rolling process involving the <u>continuous bending of a</u> <u>long strip of sheet metal (typically coiled steel) into a desired</u> <u>cross-section</u>.
- The strip passed through sets of rolls mounted on consecutive stands, each set performing only an incremental part of the bend, until the desired cross-section (profile) is obtained.
- Roll forming is used for producing constant-profile parts with long lengths and in large quantities.-
 - Roll-formed sections advantages over extrusion process: components can be lighter, with thinner walls and stronger, having been work hardened in a cold state. <u>The roll forming</u> process is more rapid than extrusion process.

MAIN FOCUS OF GRISPE RESEARCH PROJECT

Investigation of the structural performance of **curved profiles obtained through a continuous rollforming process (VARIANT A)**. The structural performance shall be evaluated with reference to the <u>bearing capacity of the corresponding flat profiles</u>.

ROLL-FORMING process

- The effects of the process on the <u>material's properties</u> are *minimal*. The physical and chemical properties virtually don't change, but the process may cause work-hardening, micro-cracks, or thinning at bends when discussing the mechanical properties of the material.
- ✓ What was investigated in GRISPE project was the modification of the structural performance (bearing capacity) of the obtained curved profile with respect to flat profiles (plastic deformations developing in the extreme fibres of the cross section may alter the bearing capacity)

Data presented in the current scientific literature refer to variation of the bearing capacity of curved profiles respect to flat profiles around **10%/20%/30%**

Two situations investigated in GRISPE:

- BENDING CAPACITY
- BENDING+AXIAL CAPACITY

To evaluate the modifications induced by the roll-forming process on the bearing capacity of flat profiles (into curved ones), the following methodology was adopted inside GRISPE research project.

Trapezoidal profile with stiffener 39/333 (Arcelor Mittal)

Face Prélaguée

Sinusoidal profile 18/76 (Bacacier)

The tested specimens manufactured by Bacacier and Arcelor Mittal consist of **steel sheetings** according to **EN 10346:2009**, which are formed to curved corrugated sheets and curved trapezoidal sheets using the following section heights and overall widths by **roll-forming**:

150

Type of profile	Steel grade according to EN 10346:2009	Height [mm]	Width [mm]	Thickness [mm]
Bacacier 18/76	S320GD	18	912	0,63 and 1,00
Arcelor Mittal 39/333	S320GD	39	1000	0,63 and 1,00

A wide test program was performed to determine the load-bearing capacity of	Type of test	Profile	R [m]	b [mm]	Span L [mm]	s [mm]	f [mm]	α [°]	Number of tests
curved profiles in bending for different			∞	2200			0	0	3
<u>bending radii.</u>		18/76	20.0	2201			30	6.31	2
		t _N = 0.63 mm	10.0	2204	2000	2200	61	12.63	2
			4.0	2229			154	31.92	2
Eare Prélaguée			8	3200			0	0	1
		18/76	20.0	3203	2000	2200	64	9.18	4
		t _N = 1.00 mm	10.0	3214	3000	3200	129	18.41	3
	Single span		4.0	3292			334	47.16	3
← 333.3 → ↓ 4 ⁷⁵ → □ ← 1000 → Face Prélaquée	test		8	3200			0	0	3
		39/333	20.0	3203	2000	2200	64	9.18	2
		t _N = 0.63 mm	10.0	3214	3000	3200	129	18.41	2
b			6.0	3239			217	30.93	3
			8	4200			0	0	2
f		39/333	20.0	4208	4000	4200	111	12.05	2
		t _N = 1.00 mm	10.0	4232	4000	4200	223	24.24	2
R span L			6.0	4291			380	40.98	2
s i	Single span		6.0	3239	3000	3200	217	30.93	2
α R	positive bending	39/333 t _N = 0.63 mm	6.0	4291	4000	4200	380	40.97	3
\checkmark	horizontal support		6.0	5300	5000	5129	576	50.61	3

Two different configurations were selected for the execution of the experimental tests, respectively for the analysis of the structural performance of the curved profile under only **<u>BENDING ACTIONS</u>** and under the condition of **<u>COMBINED BENDING AND AXIAL FORCES</u>**.

BENDING ACTIONS: SINGLE SPAN TESTS

- Evaluation of the mid-span bearing capacity of the curved profile (with reference to the original flat one).
 Definition of an opportune scheme for restraints
 - Application of a uniformly distributed loading action

COMBINED BENDING AND AXIAL ACTIONS: SINGLE SPAN TESTS WITH HORIZONTAL SUPPORTS

- Evaluation of the mid-span bearing capacity of the curved profile (with reference to the original flat one).
- Definition of an opportune scheme for restraints (arch system, M+N)
 - Application of a uniformly distributed loading action

В

PRELIMINARY CHARACTERIZATION OF MATERIAL PROPERTIES

- ✤ 3 specimens per sheet and per thickness were worked out, from coupons extracted by the tested trapezoidal sheets or directly delivered by the producer.
- Tensile tests were executed according to EN 6892-1:2009.

The determination of the yield strength $R_{p0.2}$ and the tensile strength R_m was based upon the measured sheet thickness <u>without zinc coating.</u>

Profile	Nominal thickness t _N [mm]	Core thickness t _K [mm]	Yield strength R _{p0,2} [N/mm²]	Tensile strength R _m [N/mm²]	Elongation at fracture A _{L=80mm} [%]
		0.53	330	456	26.2
	0.63	0.53	329	457	26.0
18/76		0.52	329	456	25.4
10/70		0.99	342	387	29.3
	1.00	1.00	346	387	27.6
		0.99	358	392	27.9
		0.58	406	430	27.6
	0.63	0.58	411	430	26.4
20/222		0.58	408	431	27.0
39/333		0.96	379	425	24.7
	1.00	0.96	384	427	24.5
		0.95	382	426	25.4

BENDING ACTIONS: SINGLE SPAN TESTS

- Determination of MID-SPAN MOMENT RESISTANCE: <u>Single span tests</u> for load case "gravity loading" (positive bending) were performed with uniformly distributed load simulated by <u>four line loads</u>.
- The load was introduced into the valleys of the corrugated sheets or the bottom flanges of the trapezoidal sheets via <u>transverse steel sections and timber blocks</u>. The transverse steel sections were clamped with the profile.

The test specimens are placed on supports which are **movable in horizontal direction**. Therefore, **no axial forces can appear in the apex of the curved specimen** where the bending moment becomes a maximum.

BENDING ACTIONS: SINGLE SPAN TESTS

Trapezoidal sheet 39/333

BENDING ACTIONS: SINGLE SPAN TESTS

Sinusoidal sheet 18/76

BENDING ACTIONS: SINGLE SPAN TESTS

In order to reduce the friction between the transverse steel beams at the supports of the load distribution system oil was used.

- The load was applied in <u>deflection-control</u> with a speed of 6 mm/min to 15 mm/min. The load was measured continuously using a load cell with a maximum capacity of 50 kN.
- The deflections were measured continuously in mid-span by two trip wire displacement sensors, under the bottom flanges.

Test	Span [mm]	t _N [mm]	b [mm]	Measured t _N incl. zinc coating [mm]	Meas heig [m	sured ght f m]	Measured width b [mm]	Preload [kN]	F _{max} [kN]
SSP-18-0-063-1 ¹⁾				0.57	0	0	894		3.71
SSP-18-0-063-2 ¹⁾			2200	0.56	0	0	895	0.29	4.07
SSP-18-0-063-3 ¹⁾				0.56	0	0	890		3.91
SSP-18-30-063-1 ¹⁾			2201	0.59	40	47	890		3.97
SSP-18-30-063-2 ¹⁾	2000	0.63	2201	0.55	40	48	892	0.20	3.93
SSP-18-61-063-1 ¹⁾			2204	0.56	45	56	888	0.29	4.11
SSP-18-61-063-2 ¹⁾			2204	0.56	48	60	890		4.01
SSP-18-154-063-1 ²⁾			2220	0.56	120	115	890	0.40	4.98
SSP-18-154-063-2 ²⁾			2229	0.55	120	120	895	0.49	4.86
SSP-18-0-100-1 ¹⁾			3200	1.00	0	0	887	0.35	-
SSP-18-0-100-2			5200	-	-	-	-	-	-
SSP-18-64-100-1 ²⁾				0.99	75	60	885		-
SSP-18-64-100-2 ²⁾			2202	0.99	70	70	885	0.40	-
SSP-18-64-100-3 ²⁾			3203	0.99	64	60	885	0.49	-
SSP-18-64-100-4 ²⁾	2000	1.00		0.99	60	65	885	1	-
SSP-18-129-100-1 ²⁾	3000	1.00		1.01	110	120	885		-
SSP-18-129-100-2 ²⁾			3214	1.00	110	125	885	0.49	-
SSP-18-129-100-3 ²⁾				0.99	90	85	885]	-
SSP-18-334-100-1 ²⁾				1.00	320	300	885		-
SSP-18-334-100-2 ²⁾			3292	1.00	325	295	885	0.80	-
SSP-18-334-100-3 ²				1.00	315	300	885	1	-

BENDING ACTIONS: SINGLE SPAN TESTS

CORRUGATED SHEETS 18/76

- Failure occurred by local buckling of the crest (corrugated sheets) in the span generally for thickness 0.63 mm.
 - Failure by **plastic deformation** occurred in all tests of the corrugated sheets (profile 18/76) with a nominal thickness of $t_N = 1.00$ **mm**, <u>none F_{max} value is then</u> <u>determined.</u>

The load Fmax indicates the failure load including preload, but without selfweight of the test specimen

1) test setup for flat profiles, 2) test setup for curved profiles, *) test setup for curved profiles without oil at supports of the load distribution system

BENDING ACTIONS: SINGLE SPAN TESTS

CORRUGATED SHEETS 18/76

 Failure mode (local buckling) of profile 18/76, t_N = 0.63 mm

BENDING ACTIONS: SINGLE SPAN TESTS

CORRUGATED SHEETS 18/76

Failure mode (plastic deformation) of profile 18/76 t_N = 1.00 mm

BENDING ACTIONS: SINGLE SPAN TESTS

CORRUGATED SHEETS 18/76

BENDING ACTIONS: SINGLE SPAN TESTS

Load-deflection curve (local buckling occurred – 0.63 mm)

CORRUGATED SHEETS 18/76

Test	Span [mm]	t _N [mm]	b [mm]	Measured t _N incl. zinc coating [mm]	Meas heig [m	sured ght f im]	Measured width b [mm]	Preload [kN]	F _{max} [kN]
SSP-39-0-063-1 ¹⁾				0.66	0	0	668	0.42	2.09
SSP-39-0-063-2 ¹⁾			3200	0.65	0	0	660	0.45	2.03
SSP-39-0-063-3 ²⁾				0.65	0	0	670	0.40	1. <mark>8</mark> 5
SSP-39-64-063-1 ¹⁾			2202	0.66	37	34	660	0.42	1.92
SSP-39-64-063-2 ¹⁾	2000	0.63	3203	0.66	34	32	663	0.43	1.96
SSP-39-129-063-1 ¹⁾	3000	0.65	2244	0.65	116	116	663	0.48	1.84
SSP-39-129-063-2 ¹⁾			3214	0.65	116	120	661	0.48	1.85
SSP-39-217-063-1 ²⁾				0.64	205	200	670		1.61
SSP-39-217-063-2 ²⁾			3239	0.66	205	205	670	0.49	1.56
SSP-39-217-063-3 ²⁾				0.68	210	210	668		1.65
SSP-39-0-100-1 ¹⁾			4200	1.02	0	0	665		2.80
SSP-39-0-100-2 ¹⁾			4200	1.01	0	0	668	0.71	2.81
SSP-39-111-100-1 ¹⁾			4208	1.01	74	82	668	0.71	2.78
SSP-39-111-100-2 ¹⁾	4000	1 00	4200	1.02	74	80	668		2.72
SSP-39-223-100-1 ²⁾	4000	1.00	4000	1.02	190	190	670	0.40	2.81
SSP-39-223-100-2 ²⁾			4232	1.03	190	190	670	0.49	2.82
SSP-39-380-100-1 ²⁾			4204	1.03	320	327	670	0.40	2.82
SSP-39-380-100-2 ²⁾			4291	1.04	325	315	670	0.49	2.85

BENDING ACTIONS: SINGLE SPAN TESTS

Trapezoidal Sheet 39/333

Failure occurred by **local buckling of upper flange** (trapezoidal sheets) in the span; in this case no problem of plastic deformation like in the case of sinusoidal sheet.

<u>The load F_{max} indicates the</u> <u>failure load including</u> <u>preload, but without self-</u> <u>weight of the test specimen</u>

BENDING ACTIONS: SINGLE SPAN TESTS

Trapezoidal Sheet 39/333

 Failure mode (local buckling of the upper flange) of profile 39/333 with arch stitch h = 217 mm

BENDING ACTIONS: SINGLE SPAN TESTS

Trapezoidal Sheet 39/333

 Failure mode (local buckling of the upper flange) of profile 39/333

COMBINED BENDING AND AXIAL ACTIONS: SINGLE SPAN TESTS WITH HORIZONTAL SUPPORTS

Tests performed on curved profiles placed on **horizontally fixed supports**.

The profile works as an **ARCH**, stressed by **bending moments and axial combined forces**.

By varying the span of the specimen, different slopes are performed and consequently <u>different ratios bending</u> <u>moment/axial compression</u>.

COMBINED BENDING AND AXIAL ACTIONS: SINGLE SPAN TESTS WITH HORIZONTAL SUPPORTS

Results of single span tests of profile 39/333 with horizontal support

Test	Span [mm]	Measured t _N incl. zinc coating [mm]	Measured t _N incl. Measured zinc coating [mm] height f [mm]		Measured width b [mm]	Preload [kN]	F _{max} [kN]
SSP-H-39-217-063-11)	2000	0.66	200	210	670	0.40	9.12
SSP-H-39-217-063-21)	3000	0.66	205	210	670	0.49	8.95
SSP-H-39-380-063-1 ¹⁾		0.66	330	350	670		9.49
SSP-H-39-380-063-2 ¹⁾	4000	0.66	340	350	670	0.49	11.43
SSP-H-39-380-063-31)		0.66	335	345	370		11.03
SSP-H-39-576-063-1 ¹⁾		0.65	460	465	665		5.67
SSP-H-39-576-063-2 ¹⁾	5000	0.67	450	455	668	0.49	5.17
SSP-H-39-576-063-3 ¹⁾		0.67	460	465	665		6.83

COMBINED BENDING AND AXIAL ACTIONS: SINGLE SPAN TESTS WITH HORIZONTAL SUPPORTS

Plastic deformations were observed in correspondence of the horizontal supports were the sheet is fixed

COMBINED BENDING AND AXIAL ACTIONS: SINGLE SPAN TESTS WITH HORIZONTAL SUPPORTS

Trapezoidal Sheet 39/333

Failure mode (buckling of the arch) for arch stitch h = 217 mm and h = 380 mm

COMBINED BENDING AND AXIAL ACTIONS: SINGLE SPAN TESTS WITH HORIZONTAL SUPPORTS

Trapezoidal Sheet 39/333

 Failure mode for specimen SSP-H-576-063-1, side view

COMBINED BENDING AND AXIAL ACTIONS: SINGLE SPAN TESTS WITH HORIZONTAL SUPPORTS

Load-Deflection curve

SPECIMENS SUBJECTED TO ONLY BENDING ACTIONS

Evaluation of the mid-span bending resistance

$$M_{c,Rk,F} = \frac{F_{u,k}}{b_v} \cdot \frac{L}{8} + \gamma \cdot L_v \cdot \frac{\left[2L - L_v\right]}{8}$$

- *M_{c.Rk,F}* characteristic bending moment in span (kNm/m)
- *F_{u,k}* characteristic load in kN (including preload)
- b_V width of the specimen (here: $b_V = 0.912$ or 1.00 m)
- L_v length of the specimen (here: $L_v = 2,20$ or 3,20 or 4,20 m)
- L span length (here: L = 2,00 or 3,00 or 4,00 m)

Bacacier 18/76-0,63			Bac	Bacacier 18/76-1,00			Arcelor 39/333-0,63			Arcelor 39/333-1,00		
R	1/R	Mc,Rk,F	R	1/R	Mc,Rk,F	R	1/R	Mc,Rk,F	R	1/R	Mc,Rk,F	
m	1/m	kNm/m	m	1/m	kNm/m	m	1/m	kNm/m	m	1/m	kNm/m	
flat	0,000	1,057	flat	0	1,727	flat	0	0,785	flat	0	1,539	
11,5	0,087	1,071	17,2	0,058	1,736	32,9	0,030	0,767	25,8	0,039	1,513	
<mark>9,6</mark>	0,104	1,100	10,6	0,094	1,674	9,7	0,103	0,733	10,6	0,094	1,544	
4,3	0,234	1,327	3,8	0,264	1,661	5,6	0,180	0,647	6,4	0,157	1,554	

SPECIMENS SUBJECTED TO ONLY BENDING ACTIONS

Curvature 1/R (1/m)

Bacacier 18/76-0,63 Bacacier 18			76-1,00	Arcelor 39/333-0,63			Arcelor 39/333-1,00				
R	1/R	Mc,Rk,F	R	1/R	Mc,Rk,F	R	1/R	Mc,Rk,F	R	1/R	Mc,Rk,F
m	1/m	kNm/m	m	1/m	kNm/m	m	1/m	kNm/m	m	1/m	kNm/m
flat	0,000	1,057	flat	0	1,727	flat	0	0,785	flat	0	1,539
11,5	0,087	1,071	17,2	0,058	1,736	32,9	0,030	0,767	25,8	0,039	1,5 <mark>1</mark> 3
9,6	0,104	1,100	10,6	0,094	1,674	9,7	0,103	0,733	10,6	0,094	1,544
4,3	0,234	1,327	3,8	0,264	1,661	5,6	0,180	0,647	6,4	0,157	1,554

SPECIMENS SUBJECTED TO ONLY BENDING

Design proposition for curved profiles: conclusions coming from the analysis of tests 'results

- 1. The curving process by bending or by roll-forming creates **plastic deformations in the extreme fibres** of the cross section. This generates internal stresses that can influence the bending moment capacity of the profile. <u>Anyway, test results evidenced a rather small and not uniform influence on</u> <u>the bearing capacity</u>.
- 2. For the profiles with thickness 1,0 mm, the curvature (1/R) doesn't change the bending moment capacity.
- 3. For the profiles with thickness 0,63 mm, the bending moment capacity is affected in both senses:

+ 25 % for the sinusoidal profile 18/76

- 15 % for the trapezoidal profile 39/333
- 4. With respect to this indifferent behaviour and regarding the low sensitivity of the bending moment capacity it is proposed to reduce the bending moment capacity by 10 % compared to the bending moment capacity of the flat profile. This reduction factor is an additional safety factor to cover the indifferent scattering; it is not a mechanically based coefficient.

$$M_{c,Rk,F}$$
 (curved profiles) = $0.90 \cdot M_{c,Rk,F}$ (flat profiles)

SPECIMENS SUBJECTED TO ONLY BENDING ACTIONS

Design proposition for curved profile conclusions concerning tests 'results

Comparison between the values directly derived from experimental tests on curved profiles and assumed design value (design proposition elaborated in GRISPE)- the design proposition for bending is **CONSERVATIVE**

profile	nominal thickness	radius of curvature	charact. bending moment (test value)	design proposition	ratio design/test
	t (mm)	R (m)	M _{c,Rk,F} (kNm/m)	0,9 * M _{c,Rk,F (flat)} (kNm/m)	
Bacacier 18/76	0,63	flat	1,057		
		11,5	1,071	0,951	0,89
		9,6	1,100	0,951	0,86
		4,3	1,327	0,951	0,72
	1,00	flat	1,727		
		17,2	1,736	1,554	0,89
		10,6	1,674	1,554	0,93
		3,8	1,661	1,554	0,94
Arcelor 39/333	0,63	flat	0,785		
		32,9	0,767	0,707	0,92
		9,7	0,733	0,707	0,96
		5,6	0,647	0,707	1,09
	1,00	flat	1,539		
		25,8	1,513	1,385	0,92
		10,6	1,544	1,385	0,90
		6,4	1,554	1,385	0,89

SPECIMENS SUBJECTED TO COMBINED M+N

- The static system of the test specimen is hyperstatic; the internal forces don't depend only upon the applied load, but also on the stiffness parameters of the beam and its supports.
- The statistic evaluation is applied on the failure loads in order to determine an individual characteristic (failure) load for each subset.

The problem in this case is more complicated and shall be solved in an indirect way, since the internal forces depend on several factors that are not immediately known, such as:

SPECIMENS SUBJECTED TO COMBINED M+N

System scale 1 : 25

MODEL for SIMULAIONS: The curved profile is approximated as a polygonal line

PARAMETERS CONSIDERED IN THE NUMERICAL SIMULATIONS

✓ Spring stiffness of the horizontal support
 <u>fixed (C = ∞)</u>
 C = 20 kN/m/cm
 C = 10 kN/m/cm
 Cind (29 > 88 kN/m/cm)
 Note: neglecting the displacements at the ends leads to unsafe values (bending underestimated)

The spring stiffness Cind is different for each arch; this value is calibrated according to the condition, that the calculated vertical deflection at summit is the same as measured in the test family.

Cross section properties

gross cross section Ag , Jg effective cross section Aef , Jef

CALIBRATION OF SUPPORT STIFFNESS

- For each test <u>the deflection at mid span</u> is evaluated, as well as the <u>ultimate</u> <u>load corresponding to failure</u>; as a consequence, the overall stiffness of the specimen C_{f,i} can be evaluated as:
- The mean value of the stiffness of the specimens achieved form tests C_f is considered as representative for this family and can be evaluated as:
- 3. Using the overall stiffness value of the family, <u>a midspan deflection under</u> <u>characteristic failure load can be calculated</u>, which is considered as representative for this family. Since the internal forces of the arch are calculated for the unit width, the result should be multiplied with the width of the test specimen.

C	$=F_u/$	
$c_{f,i}$	$-/f_{\rm max}$	

$$C_f = \operatorname{mean}(C_{f,i})$$

$$f_{eq} = \frac{F_{u,k}}{C_f} \cdot b_v$$

test no. SSP- H-39	F _u kN	deflection f _{max} at mid- span (mm)	L m	b∨ m	overall stiffness specimen C _{f,i} (kN/mm)	mean value stiffness Cf	repr. deflection (mm) for F _{u,k} , width 1 m
217-063-1	9,12	18,0	3,00	0,667	0,507	0,444	16,6
217-063-2	8,95	23,5	3,00	0,667	0,381		

Calculating the arch with the software, **the spring stiffness of the horizontal support is varied and finally locked to a** value, for which the calculated midspan deflection under characteristic failure load corresponds to the deflection feq. This spring stiffness of the horizontal support is the above mentioned Cind.

10	70-003-2	5,17	14,1	5,00	0,667	0,367	
5	76-063-3	6,83	18,0	5,00	0,667	0,379	

SPECIMENS SUBJECTED TO COMBINED M+N: Evaluation of internal M/N forces

	Cross section	spring stiffness at support (kN/m/cm)		displacements (cm)		support reactions (kN/m)		M- / N-values (kNm/m, kN/m)		
Test setup/ span			Failure load					at load point near to summit		at suppor t
			(kN/m)	f _h (support)	f _v (summit)	Rh	Ry	max M	corresp N	max N
1 / 3,00	gross	fixed	11.03	0,00	0,11	20,46	5,52	0,17	20,62	21,19
m	3	68,0	11,03	0,28	1,67	18,81	5,52	0,49	18,98	19,60
		20,0	11,03	0,79	4,55	15,76	5,52	1,08	15,94	16,65
		10,0	11,03	1,28	7,33	12,82	5,52	1,65	13,01	13,80
	effective	fixed	11,03	0,00	0,41	20,35	5,52	0,19	20,51	21,08
		88,0	11,03	0,22	1,66	19,64	5,52	0,33	19,80	20,40
		20,0	11,03	0,88	5,33	17,57	5,52	0,73	17,74	18,39
		10,0	11,03	1,55	9,08	15,46	5,52	1,14	15,64	16,35
2 / 4,00	gross	fixed	12,77	0,00	0,08	19,13	6,39	0,25	19,35	20,16
m		62,0	12,77	0,30	1,45	18,64	6,39	0,40	18,87	19,70
		20,0	12,77	0,88	4,10	17,69	6,39	0,71	17,92	18,80
		10,0	12,77	1,64	7,56	16,45	6,39	1,11	16,69	17,62
	effective	fixed	12,77	0,00	0,39	19,09	6,39	0,26	19,31	20,13
		79,0	12,77	0,24	1,44	18,88	6,39	0,33	19,11	19,93
		20,0	12,77	0,91	4,51	18,29	6,39	0,51	18,53	19,37
		10,0	12,77	1,76	8,33	17,56	6,39	0,75	17,80	18,68
3 / 5,00 m	gross	fixed	6,62	0,00	0,02	9,23	3,31	0,16	9,36	9,81
		29,0	6,62	0,31	1,34	9,01	3,31	0,26	9,14	9,60
		20,0	6,62	0,45	1,91	8,91	3,31	0,30	9,04	9,50
		10,0	6,62	0,86	3,67	8,61	3,31	0,43	8,74	9,22
	effective	fixed	6,62	0,00	0,23	9,22	3,31	0,16	9,35	9,80
		33,0	6,62	0,28	1,33	9,12	3,31	0,21	9,09	9,70
		20,0	6,62	0,45	2,07	9,05	3,31	0,24	9,18	9,63
		10,0	6,62	0,89	3,91	8,88	3,31	0,31	9,01	9,48

DIN 18807 APPROACH FOR THE EVALUATION OF M/N INTERACTION

In case of compression force the following equation can be applied:

$$\frac{N_D}{N_{d,D}} \cdot \left[1 + 0.5 \cdot \alpha \cdot \left(1 - \frac{N_D}{N_{d,D}}\right)\right] + \frac{M}{M_d} \le 1$$
$$\alpha = \frac{L_{cr}}{i_{ef} \cdot \pi} \cdot \sqrt{\frac{f_{y,k}}{E}}$$

 N_D design value of compressive force M design value of bending moment Md design resistance of bending moment N_{dD} design resistance of compressive force

PROBLEM

- In the **M-N-interaction formula**, the coefficient **α** should be limited to 1 if **α > 1**.
- Anyway, this limit is not valid when the slenderness ratio α is used to determine the ultimate compressive stress with respect to overall buckling.
- Hereafter, the DIN-procedure for combined bending moment/axial compression, adapted to curved profiles is described in detail organizing it into 4 different steps.

DIN 18807 APPROACH FOR THE EVALUATION OF M/N INTERACTION

Step 1: <u>Determination of the internal forces of the arch under characteristic failure load (= design load)</u> under consideration of the horizontal spring stiffness C at the supports (M and N depends on C).

	Cross section	spring stiffness at support (kN/m/cm)		displac	omonto	support		M- / N-values (kNm/m, kN/m)		
Test setup/ span			Failure load	(cm)		reactions (kN/m)		at load point near to summit		at suppor t
				fh	fv				corresp	
			(kN/m)	(support)	(summit)	Rh	Rv	max M	N	max N
1 / 3,00 m	gross	fixed	11,03	0,00	0,11	20,46	5,52	0,17	20,62	21,19
		68,0	11,03	0,28	1,67	18,81	5,52	0,49	18,98	19,60
		20,0	11,03	0,79	4,55	15,76	5,52	1,08	15,94	16,65
		10,0	11,03	1,28	7,33	12,82	5,52	1,65	13,01	13,80
	effective	fixed	11,03	0,00	0,41	20,35	5,52	0,19	20,51	21,08
		88,0	11,03	0,22	1,66	19,64	5,52	0,33	19,80	20,40
		20,0	11,03	0,88	5,33	17,57	5,52	0,73	17,74	18,39
		10,0	11,03	1,55	9,08	15,46	5,52	1,14	15,64	16,35
2 / 4,00 m	gross	fixed	12,77	0,00	0,08	19,13	6,39	0,25	19,35	20,16
		62,0	12,77	0,30	1,45	18,64	6,39	0,40	18,87	19,70
		20,0	12,77	0,88	4,10	17,69	6,39	0,71	17,92	18,80
		10,0	12,77	1,64	7,56	16,45	6,39	1,11	16,69	17,62

Evaluation of the values of M and N corresponding to the failure load

Step 2: <u>Determination of the buckling length</u> <u>Lcr</u>. The buckling length of a circle-shaped arch can be found in the literature, for instance <u>DIN</u> <u>18800 part 2</u>:

DIN 18807 APPROACH FOR THE EVALUATION OF M/N INTERACTION

Step 3: Determination of design resistance to compressive axial force

$$N_{d,D} = \min(\sigma_{cd} \cdot A_{ef}; 0, 8\sigma_{elg} \cdot A_g)$$

Ideal buckling force

$$maxN_{dD} = 0.8 \cdot \sigma_{elg} \cdot A_g = 0.8 \cdot \frac{\pi^2 \cdot E \cdot J_g}{L_{cr}^2}$$

Critical buckling force $ultN_d$

$$tN_{dD} = \sigma_{cd} \cdot A_{ef}$$

	I f .	α	$\sigma_{\rm cd}/\beta_{\rm S}$
Slenderness ratio	$\alpha = \frac{L_{CT}}{i_{ef} \cdot \pi} \cdot \sqrt{\frac{J_{y,k}}{E}}$	$lpha \le 0,30 \ 0,30 < lpha \le 1,85 \ 1,85 < lpha$	1,00 1,126 — 0,419 · α 1,2/α ²

Step 4: <u>Final interaction M/N</u> and final assessment

$$\frac{N_D}{N_{d,D}} \cdot \left[1 + 0.5 \cdot \alpha \cdot \left(1 - \frac{N_D}{N_{d,D}}\right)\right] + \frac{M_D}{M_{d,D}} \le 1$$

For curved profiles with only bending actions it is proposed to <u>reduce the bending moment</u> <u>capacity by 10 % compared to the bending moment capacity of the flat profiles</u>.

For <u>curved profiles with horizontal support (arch: M+N)</u> it is proposed to use the following design procedure:

- 1. The internal forces of the arch (bending moments, axial forces) should be calculated using the gross cross section values Ag and Jg of the profiled sheeting.
- 2. The horizontal displacement at supports may not be neglected. As greater the displacement is estimated, the internal forces become more unfavourable. Therefore it is necessary to take into account the horizontal displacement by modelling the support with a horizontal spring. The spring stiffness, which depends on the substructure and the fixing of the profiled sheeting, should be adjusted, that the calculated horizontal displacements meet the real values. To avoid unsafe design, the spring stiffness should not be over-estimated. Under-estimation of the spring stiffness leads to an over-estimation of the horizontal displacements and in consequence to a design on the safe side.
- 3. The bending moment axial compression interaction should be calculated with the interaction formula of DIN 18807, <u>but without limitation of α to 1</u>.

Please note that the design model is verified only for arches with symmetric loading.

Thank you for your attention