

Corrugated Sheeting

Ph. D. Thibault RENAUX – Joris Ide

Contextual introduction

Performed works during GRISPE project

Design method for assembled profiles

Contextual introduction

+ Flooring application:

Composite floor deck:

Dry floor deck:

✤ Purlins and spacers:

Roofing application:

Single of double skin pitch roof with sinusoidal or trapezoidal profiles:

✤ Flat roof with trapezoidal deck:

Wall and cladding application:
 Liner trays for internal skin:

+ Trapezoidal and sinusoidal profiles for single skin or external skin:

What is a corrugated steel sheet ?

⇒Product having a continuous curve

Industrial buildings:

SNC Pont d'Ouit – Architect: DGA-Architecture

Residential buildings:

Aiguillon Construction Architect: Christophe Rousselle Architecte

Comercial buildings:

+ Sport infrastructure buildings:

<u>**But</u> actual European design rules don't prescribe calculation method (see EN 1993-1-3) !</u></u>**

🕈 DIN 59231

- Article in the revue "Revue de Construction Métallique" n°1-2012:
 - Calculation method developed in comparison with FEM

Ilo approach ⇒ EN 1993-4

Swedish Code for Light Gauge Metal Structures StBK-N5

Performed works during GRISPE project

2 classical corrugated steel sheets are studied:
 18 mm depth / radius of 23 mm / 76 mm pitch

+ 46 mm depth / radius of 29,25 mm / 150 mm pitch

Supplier: Bacacier

GRISPE Project – performed works Tests campaign

est program:	Type of test	Thickness	Support width [mm] /	Span [mm]	
		[mm]	rastening	18/76	46/
	Circle and test with envity loading	0.63	-	1500	20
According EN 1993-1-3	Single span test with gravity loading	1.00	-	2000	30
	Internal support tests with gravity loading	0.63	10	400	6
				800	10
			40	400	6
				800	10
		1.00	10	400	6
				1000	12
			40	400	6
			40	1000	12
	Internal support tests with uplift loading	0.63	<u>valley</u> ,	400	6
				800	10
			crest	400	6
				800	10
			valley	400	9
				1000	14

End support tests with gravity
loading0.63-Shear test0.63-

Supplemented by tensile tests

The project has received financial support from the European Community (RFCS programme) under grant agreement No 754092

1.00

Number of tests

46/150

18/76

46/150

GRISPE Project – performed works Adjustement of test results

✤ According EN 1993-1-3 § A.6.2:

$$R_{adj,i} = R_{obs,i}/\mu_R \qquad \qquad \mu_R = \left(\frac{f_{yb,obs}}{f_{yb}}\right)^{\alpha} \cdot \left(\frac{t_{obs,cor}}{t_{cor}}\right)^{\beta}$$

✤ According EN 1993-1-3 § A.6.3.1:

$$s = \left[\sum_{i=1}^{n} \left(R_{adj,i} - R_{m}\right)^{2} / (n-1)\right]^{0,5}$$

$$R_k = R_m + / - k \cdot s$$

n	4	5	6	8	10	20	30	~
k	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64

To determine the bending moment capacity:

Maximum bending moment in span (single span tests):

$$M_{c,Rk,F} = \frac{F_{u,k}}{b_V} \cdot \frac{L}{8} + \frac{g \cdot L_V \cdot (2 \cdot L - L_v)}{8}$$

- ✤ M_{c,Rk,F} characteristic bending moment in span
- ✤ F_{u,k} characteristic load (including preload)
- \bullet b_v width of the test specimen
- ✤ L_v length of the test specimen
- + L span length
- q self-weight of the test specimen

+ Two modes of failure occurred: Yielding or Buckling of the compressed part

GRISPE Project – performed works Single span test – failure mode by yielding

Profile 18.76 – 1,00 mm

If For small R/t ratio ⇒ failure by yielding in midspan (no buckling)

GRISPE Project – performed works Single span test – failure mode by buckling

Profile 18.76 – 0,63 mm

Profile 46.150 – 1,00 mm

✤ For great R/t ratio ⇒ failure by local buckling

GRISPE Project – performed works

Test under downward loading:

GRISPE Project – performed works

✤ Test for uplift loading: F1 & F2 B-B: Fastening in the valley Fastening in the crest В F2 F1 щел /////// _ А В ΠΠΠΠ 0,5L 0,5L M6 M6 Lv 476/900 mm 476/900 mm timber block <u>A-A:</u>

GRISPE Project – performed works Intermediate support test - formulas

• Support reaction for intermediate support test: $R_{w,Rk,B} = F_{u,k}/b_V$

✤ Bending moment at support: $M_{c,Rk,B} = R_{w,Rk,B} \cdot \frac{L}{4} + \frac{g \cdot L_V \cdot (2L - L_v)}{8}$

R_{w,Rk,B} characteristic support reaction at intermediate support
 M_{c,Rk,F} characteristic bending moment at intermediate support
 F_{u,k} characteristic load (including preload)
 b_V width of the test specimen
 L length of the test specimen
 g self-weight of the test specimen

+ Failure dominated by local deformations and buckling of the compressed part

Example of a interaction diagram M/R:

For downward loading:

Profile 18.76 – 0,63 mm / 10 mm width of support

Profile 46.150 – 1,00 mm / 10 mm width of support

+ For uplift loading:

Profile 18.76 – 0,63 mm – fixing in valley

Profile 18.76 – 0,63 mm – fixing in crest

Princip and example of failure:

End support reaction:

$$R_{w,Rk,A} = \frac{F_{u,k}}{b_V} \cdot \frac{(s-a)}{s}$$

+	R _{w,Rk,A}	characteristic support reaction at end support
+	F _{u,k}	characteristic load (including preload)
+	b _v	width of the test specimen
+	а	distance between load axis and support axis
+	S	span length

The self-weight of the test specimen is neglected

Princip and example of failure :

Maximum shear force at the support:

$$V_{w,Rk} = \frac{F_{u,k}}{b_V} \cdot \frac{(s-a)}{s}$$

- $\mathbf{v}_{w,Rk}$ characteristic shear force at end support
- F_{u,k} characteristic load (including preload)
- ✤ b_v width of the test specimen
- a distance between load axis and support axis
- ✤ s span length
- the self-weight of the test specimen is neglected

Two calculation method for design corrugated sheets in isostatic bending:

First method is based on a Swedish approach

Second method consider the "Eurocode" silo approach defined with a field of application calibrated on the tests done during GRISPE project

- For the behaviour of corrugated sheets on intermediate support:
 - The bending moment resistance at internal support under uplift loading with fixing in valley = bending moment in span under downward loading
 - The results don't show a clear rule as too many parameter interfere
 - More tests are necessary to reach a viable conclusion
 - + Reduction of the ultimate bending moment is influenced geometric parameters

• For the shear behaviour and reaction on support: results don't allow to find a law

Design method for corrugated sheets

Design procedure for the bending moment capacity in span:

If R/t < 0,04 x E/f_{yb} ⇒ the cross section need not be checked for local buckling

+ In this case, the characteristic bending moment is determined by:

$$M_{c,Rk} = W_{y} \cdot f_{yb}$$

✤ With W_v the section modulus of the gross cross section

Design method for corrugated sheeting Isostatic steel sheet – complete method

If R/t ≥ 0,04 x E/f_{yb} ⇒ For ULS: the characteristic bending moment can be calculated using the reduced compressive stress σ_c (StBK-N5):

$$M_{c,Rk} = W_{y} \cdot \sigma_{c}$$

coefficient η η = 0,19 + 0,67/√1 + R/(100 · t)
the buckling stress: σ_{elr} = 0,60 · η · E · t/R
the slenderness ratio: α = √f_{yb}/σ_{elr}
for α ≤ 0,30 σ_c = f_{yb}
for 0,30 < α < 1,10 σ_c = (1,126 - 0,419 · α) · f_{yb}
For 1,10 ≤ α σ_c = (0,8/α²) · f_{yb}

If R/t ≥ 0,04 x E/f_{yb} ⇒ For SLS: the moment of inertia I_y is calculated knowing W_y :

$$W_{y} = \frac{4 \cdot I_{y} \cdot t}{(b_{R} \cdot h_{w}/2)}$$

 → W_y is determined consideering the characteristic bending moment using a reduced stress of $f_{yb}/1,5$

- + If conditions:
 - Profile installed as single span girder and
 - Uniformly distributed loads and
 - + Ratio R/t \leq 0,1 \cdot E/f_{vb} and
 - I Steel core thickness t_{cor} ≥ 0,55 mm <u>and</u>
 - In Profile height 18 mm ≤ h ≤ 46 mm and
 - + Profile pitch 76 mm \leq p \leq 150 mm
- Are respected, the following procedure may be adopted:
 - + Moment of inertia per unit width: $I_v = 0,13 \cdot t \cdot h^2$
 - Section modulus per unit width:
 - Characteristic bending moment:

$$W_y = 0,26 \cdot t \cdot h$$

$$M_{c,Rk} = W_y \cdot f_{yb}$$

For the bending moment resistance at internal support under "uplift" loading with fixing in valley:

$$M_{c,Rk,B} = M_{c,Rk,F}$$

Actually no calculation method for other cases due to test results not sufficient to conclude for the M/R interaction

Corrugated Sheeting

Ph. D. Thibault RENAUX – Joris Ide

