

Assembled profiles

Ph. D. Thibault RENAUX – Joris Ide

Contextual introduction

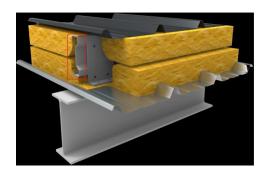
Experimental works during GRISPE project

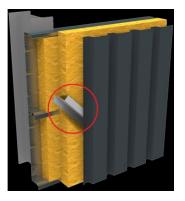
Design method for assembled profiles


Contextual introduction

+ Flooring application:

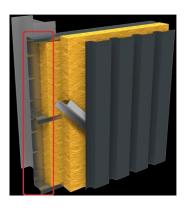
Composite floor deck:

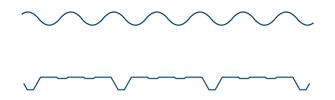


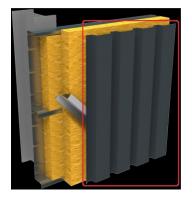


Dry floor deck:

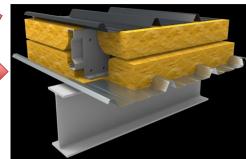
+ Purlins and spacers:

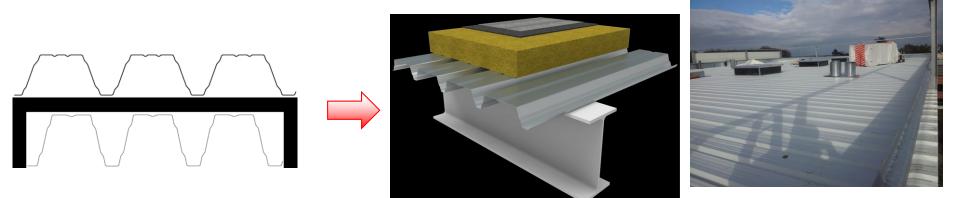


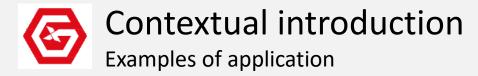


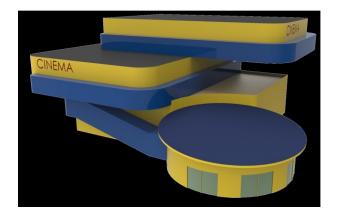

Wall and cladding application:
 Liner trays for internal skin:

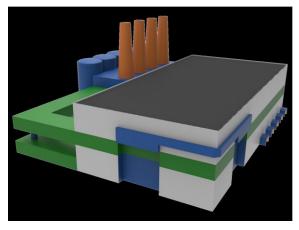
Trapezoidal and sinusoidal profiles for single skin or external skin:




Roofing application:


Single of double skin pitch roof with sinusoidal or trapezoidal profiles:

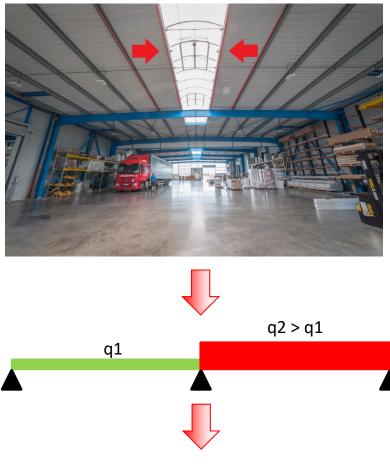

+ Flat roof with trapezoidal deck:



Commercial and public area application:

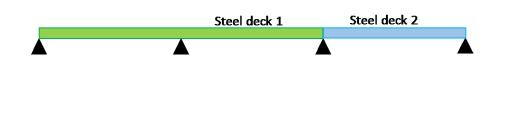
Industrial or residential application:




- Loadings are determined according Eurocodes:
 - ✤ EN 1990 + EN 1991-1-1 + EN 1991-1-3 + EN 1991-1-4....
 - …and their national annex

- Choice of the deck according its resistance calculated according EN 1993-1-3 and national annexe
- This resistance is established for one deck
- ✦ Consequently the better performance ⇒ 2 (or more) spans configuration:

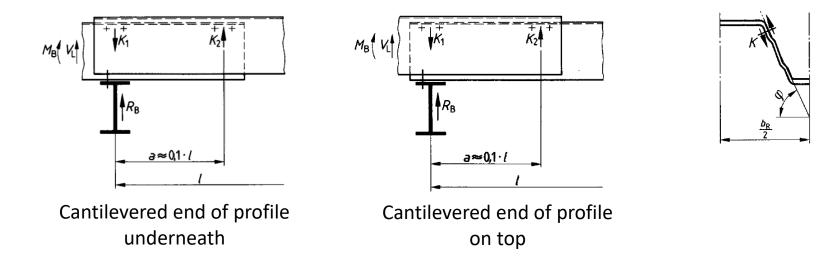
Contextual introduction Problematic situations drive to a reduction of performance


Local area on roof with more elevated loading ("Wind + Snow" effect) :

How avoid increasing thickness ?

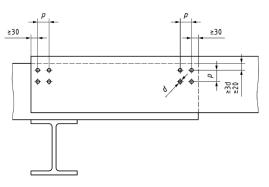
- Isostatic case due to location changes of:
 - smoke extractors

- Consequences:
 - Characteristic resistance values not sufficient



- Can Eurocode provides solutions ?
 - ✤ Actually : NO
 - But some guidance or information are allowable in national standards

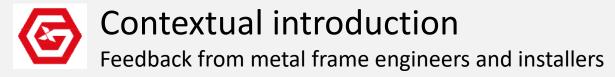
- ✤ Objective of GRISPE Project :
 - Propose intermediate support joint solutions
 - + Determine the consequence on the intermediate support behaviour
 - + Establish design procedures to calculate their benefits



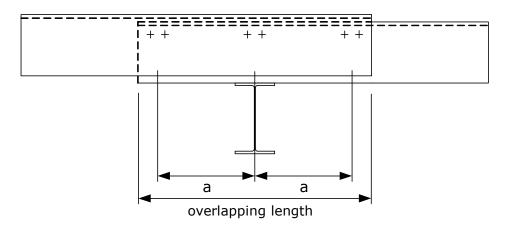
- ✤ Joint according to DIN 18807-3 (DIN), and included in EN 1090-4 § B.8 :
 - Permitted in the area of support (moment resisting connection)
 - Ultimate limit state of the whole structure remains unaltered
 - + 2 variants :

Contextual introduction Actual solution in German national standard + EN 1090-4

- + Joint according to DIN 18807-3 (DIN), and included in EN 1090-4 § B.8:
 - Design of sheeting and connections as follow:

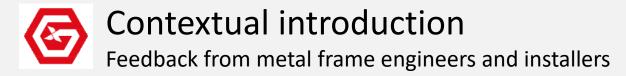


Cantilevered end of profile underneath:

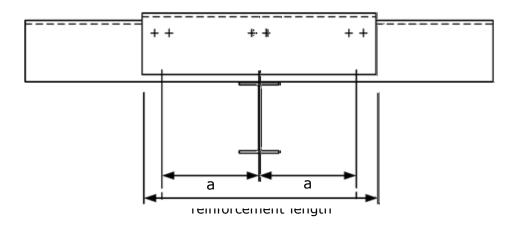

$$K = maxK_i = \frac{|M_B|}{2 \cdot a \cdot \sin \varphi} \cdot b_R$$

Cantilevered end of profiled on top:

$$K = maxK_i = \frac{\left|\frac{M_B}{a} + V_L\right|}{2 \cdot \sin\varphi} \cdot b_R$$



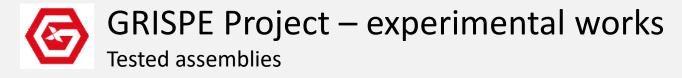
Overlap joint (OL):



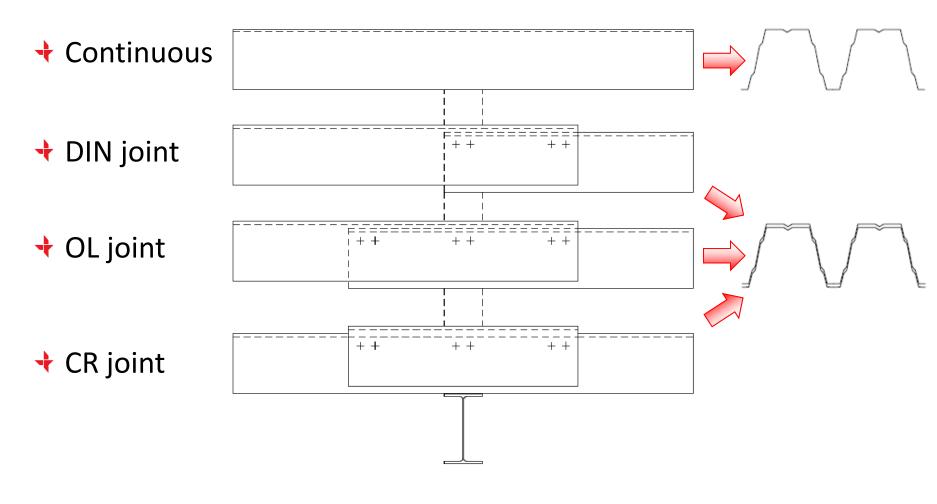
Overlapping length 2.a at both sides of the support

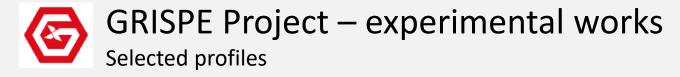
+ Load-bearing capacity increases compared with a single continuous profile

Continuous profile with local reinforcement (CR):

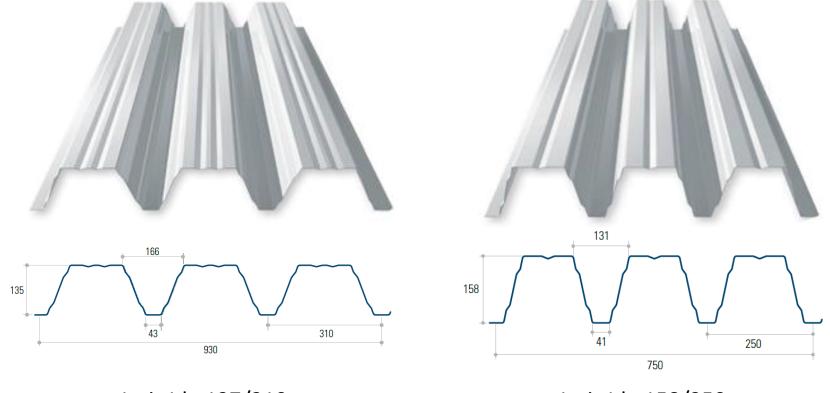


Overlapping length 2·a at both sides of the support

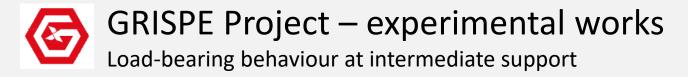

+ Load-bearing capacity increases compared with a single continuous profile

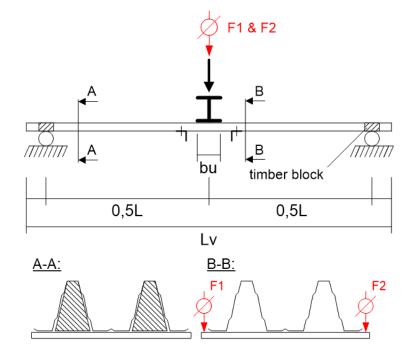


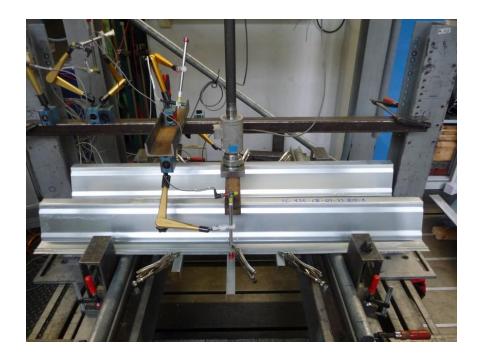
Experimental works during GRISPE project



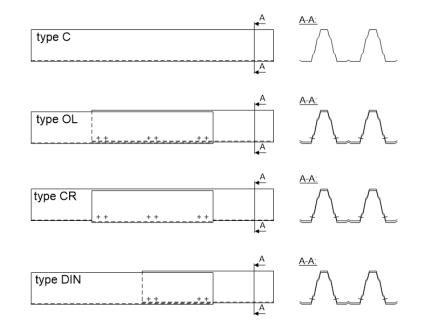
Reference test = continuous deck:


+ Higher and smaller angle of the web:


Joris Ide 137/310


Joris Ide 158/250

✤ 2 thicknesses: 0,75 mm and 1,00 mm


✤ 3-point bending tests according to EN 1993-1-3 § A.2.4:

GRISPE Project – experimental works Parameters of the tests

- 3 types of assemblies (+ reference)
- Sheet thickness (0,75 mm & 1,00 mm)
- Profile type (135/310 & 158/250)
- Support width b_u (60 mm & 160 mm)
- Span length (800 mm to 3 200 mm)

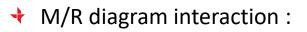
Tests supplemented with tensile tests

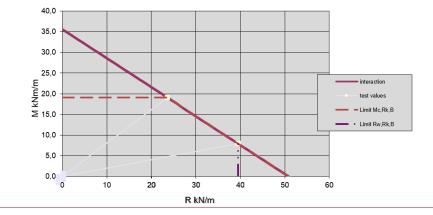
GRISPE Project – experimental works Adjustment of test results

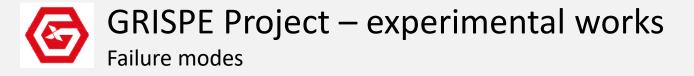
✤ According EN 1993-1-3 § A.6.2:

$$R_{adj,i} = R_{obs,i}/\mu_R \qquad \qquad \mu_R = \left(\frac{f_{yb,obs}}{f_{yb}}\right)^{\alpha} \cdot \left(\frac{t_{obs,cor}}{t_{cor}}\right)^{\beta}$$

✤ According EN 1993-1-3 § A.6.3:

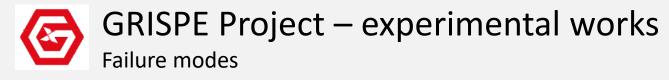

$$s = \left[\sum_{i=1}^{n} \left(R_{adj,i} - R_m\right)^2 / (n-1)\right]^{0,5}$$


$$R_k = R_m + / - k \cdot s$$


n	4	5	6	8	10	20	30	∞
k	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64

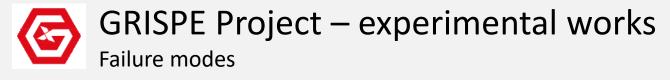
GRISPE Project – experimental works Characteristic values

- Support reaction for intermediate support test: $R_{w,Rk,B} = F_{u,k}/b_V$
- Bending moment at support: $M_{c,Rk,B} = R_{w,Rk,B} \cdot \frac{L}{4} + \frac{g \cdot L_V \cdot (2L L_v)}{8}$
 - ✤ R_{w,Rk,B} characteristic support reaction at intermediate support
 - M_{c,Rk,F} characteristic bending moment at intermediate support
 - F_{u,k} characteristic load (including preload)
 - b_v width of the test specimen
 - L_v length of the test specimen
 - 🕇 L span length
 - g self-weight of the test specimen

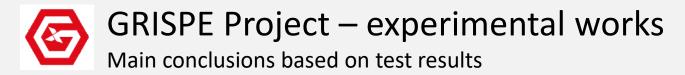




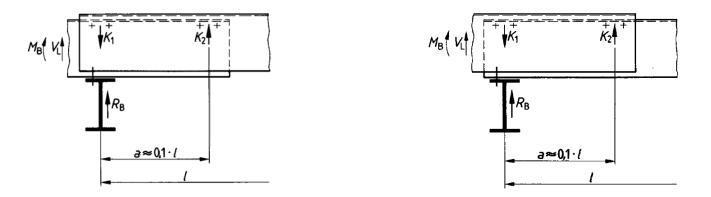
Continuous profile:



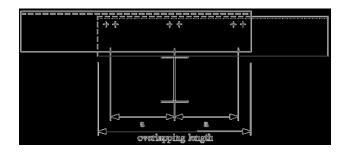

+ DIN joint:

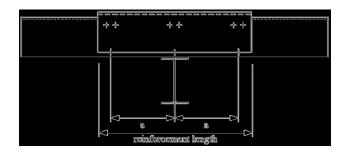


Only for cantilevered end of profile on top



Double overlap joint (OL) and continuous profile with local reinforcement (CR) = same behaviour:

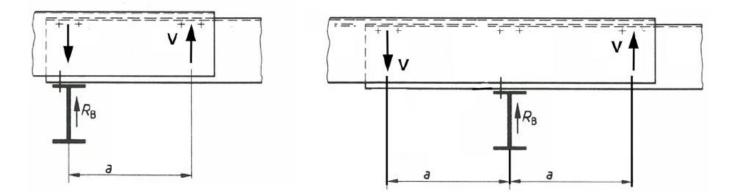

✤ DIN joint:



- provides the same load bearing capacity as continuous profile with an overlap sufficiently long
- Overlap length should be designed in a way that web crippling at the end of the overlap is excluded
- The sufficient overlap length should be checked by an additional verification of the shear force at the end of the overlap

GRISPE Project – experimental works Main conclusions based on test results

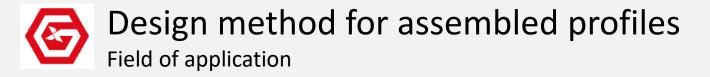
Assemblies with double cross section (OL and CR):

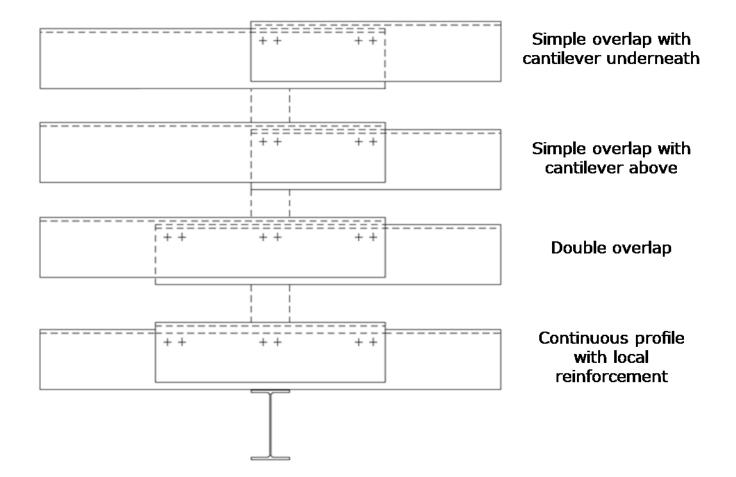


- Provides 90 % of the resistance of the continuous profile (to be multiplied by 2
 2 cross section assembled)
- Overlap length should be designed in a way that web crippling at the end of the overlap is excluded
- The sufficient overlap length should be checked by an additional verification of the shear force at the end of the overlap

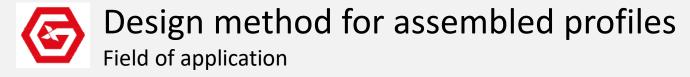
GRISPE Project – experimental works Main conclusions based on test results

Verification of the shear force at the end of the overlap:

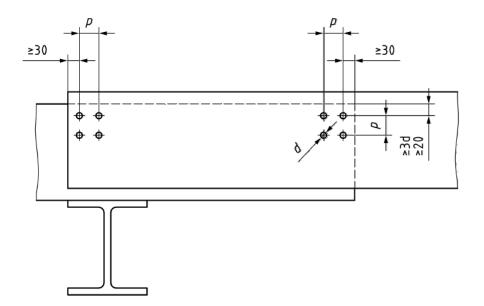



+ DIN joint: $F = M_{c,Rk,B}/a$

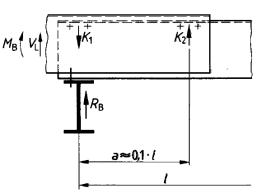
+ OL and CR joints: $F = M_{c,Rk,B}/(2 \cdot a)$



Design method for assembled profiles



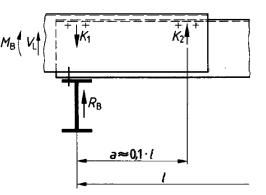
With uniformly distributed loads



For ALL studied joint (DIN, OL, CR):

✤ Edge and hole spacings for statically effective overlapping

Design method for assembled profiles DIN joint design – cantilevered end of profile on top

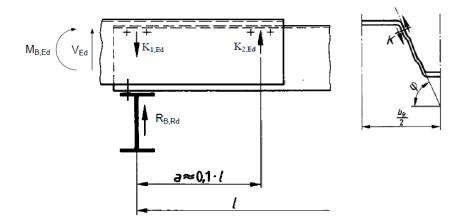


• <u>Step 1 \Rightarrow Verification of the resistance of the assembly in the support axis</u> with the help of $M_{Rd,B}$ and $R_{w,Rd,B}$ of the continuous profile:

Downward loading:

$$\frac{M_{B,Ed}}{M_{B,Rd}} \le 1,00 \qquad \qquad \frac{R_{B,Ed}}{R_{w,Rd,B}} \le 1,00 \qquad \qquad \frac{M_{B,Ed}}{M_{B,Rd}} + \frac{R_{B,Ed}}{R_{w,Rd,B}} \le 1,25$$
Uplift loading:
$$\frac{M_{B,Ed}}{M_{B,Rd}} \le 1,00 \qquad \qquad \frac{V_{L,Ed}}{V_{w,Rd}} \le 1,00 \qquad \qquad \frac{M_{B,Ed}}{M_{B,Rd}} + \frac{V_{L,Ed}}{V_{w,Rd}} \le 1,25$$

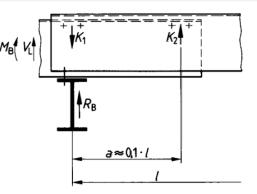
Design method for assembled profiles DIN joint design – cantilevered end of profile on top



★ Step 2 ⇒ Verification of web crippling only for downward loading:

With R_{w,Rk,B} of the opposite profile position (in general negative position) for the maximum support width, in general I_{aB} = 160 mm

$$F_{Ed} = M_{B,Ed}/a < 0.5 \cdot R_{w,Rk,B}$$

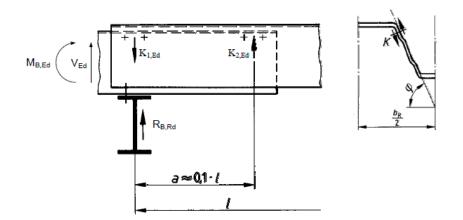


Step 3 \Rightarrow Verification of the connection K_{Ed} only for downward loading (in one web):

$$K_{Ed} = \max K_i = \frac{\left|\frac{M_{B,Ed}}{a} + V_{L,Ed}\right|}{2 \cdot \sin \varphi} \cdot b_R \le \sum F_{V,Rd}$$

• With $\Sigma F_{V,Rd}$ the shear resistance of the screws

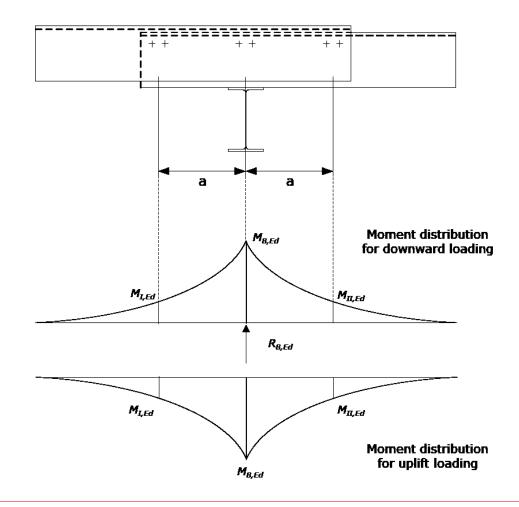
Design method for assembled profiles DIN joint design – cantilevered end of profile underneath



• <u>Step 1 \Rightarrow Verification of the resistance of the assembly in the support axis</u> with the help of $M_{Rd,B}$ and $R_{w,Rd,B}$ of the continuous profile:

Downward loading:

$$\frac{M_{B,Ed}}{M_{B,Rd}} \le 1,00 \qquad \qquad \frac{R_{B,Ed}}{R_{w,Rd,B}} \le 1,00 \qquad \qquad \frac{M_{B,Ed}}{M_{B,Rd}} + \frac{R_{B,Ed}}{R_{w,Rd,B}} \le 1,25$$
Uplift loading:
$$\frac{M_{B,Ed}}{M_{B,Rd}} \le 1,00 \qquad \qquad \frac{V_{L,Ed}}{V_{w,Rd}} \le 1,00 \qquad \qquad \frac{M_{B,Ed}}{M_{B,Rd}} + \frac{V_{L,Ed}}{V_{w,Rd}} \le 1,25$$


- No Verification of web crippling is needed (no step 2)
- **•** Step 3 \Rightarrow Verification of the connection K_{Ed} only for downward loading (in one web):

$$K_{Ed} = \max K_i = \frac{\left|\frac{M_{B,Ed}}{a}\right|}{2 \cdot \sin \varphi} \cdot b_R \le \sum F_{V,Rd}$$

• With $\Sigma F_{V,Rd}$ the shear resistance of the screws

Design method for assembled profiles OL joint design – double overlap joint

Step 1 ⇒ Determination of the bending moment distribution under desing loads like for continuous sheets ⇒ M_{B,Ed} / R_{B,Ed} / M_{1,Ed} / M_{2,Ed}:

Design method for assembled profiles OL joint design – double overlap joint

◆ Step 2 ⇒ Verification of the profiles at the support axis with 90 % of the resistance of the overlapping profiles:

$$\frac{M_{B,Ed}}{0.9 \cdot \sum M_{B,Rd}} + \frac{V_{L,Ed}}{0.9 \cdot \sum V_{w,Rd}} \le 1.25$$

Design method for assembled profiles OL joint design – double overlap joint

• <u>Step 3 \Rightarrow Verification of resistance of the assembly at the ends of the overlap</u> with $M_{l,Ed}$, $M_{ll,Ed}$, and the line loads introduced by K_i :

$$F_{Ed} = \frac{M_{B,Ed}}{2 \cdot a}$$

+ For downward loading: F_{Ed} = tension force on the webs:

 $\frac{M_{I,Ed}}{M_{B,Rd}} \le 1,00 \qquad \frac{M_{II,Ed}}{M_{B,Rd}} \le 1,00 \qquad \frac{F_{Ed}}{V_{w,Rd}} \le 1,00 \qquad \frac{M_{I,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{V_{w,Rd}} \le 1,25 \qquad \frac{M_{II,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{V_{w,Rd}} \le 1,25$

+ For uplift loading: F_{Ed} = compression force on the webs:

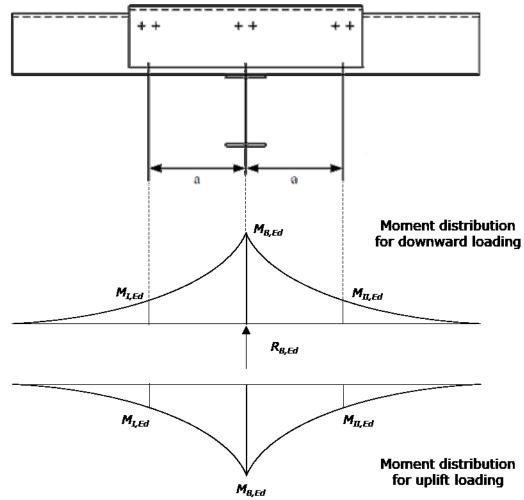
$$\frac{M_{I,Ed}}{M_{B,Rd}} \le 1,00 \qquad \frac{M_{II,Ed}}{M_{B,Rd}} \le 1,00 \qquad \frac{F_{Ed}}{R_{w,Rd,B}} \le 1,00 \qquad \frac{M_{I,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{R_{w,Rd,B}} \le 1,25 \qquad \frac{M_{II,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{R_{w,Rd,B}} \le 1,25$$

Both cases of loading considering the resistance values of the profile in the opposite position at intermediate supports

Design method for assembled profiles OL joint design – double overlap joint

- ★ Step 4 ⇒ Verification of web crippling:
 - Uplift loading = no verification of web-crippling is needed
 - Downward loading:
 - With R_{w,Rk,B} of the opposite profile position (in general negative position) for the maximum support width, in general I_{aB} = 160 mm:

$$F_{Ed} = M_{B,Ed} / (2 \cdot a) < 0.5 \cdot R_{w,Rk,B}$$


Is the set of the connection K_{Ed} for both cases of loading (in one web):

$$K_{Ed} = \max K_i = \frac{|M_{B,Ed}|}{4 \cdot a \cdot \sin \varphi} \cdot b_R \le \sum F_{V,Rd}$$

+ With $\Sigma F_{V,Rd}$ the shear resistance of the screws

◆ <u>Step 1 ⇒ Determination of the bending moment distribution</u> under desing loads like for continuous sheets ⇒ M_{B,Ed} / R_{B,Ed} / M_{1,Ed} / M_{2,Ed}:

Design method for assembled profiles CR joint design – Continuous profile with local Reinforcement

◆ Step 2 ⇒ Verification of the profiles at the support axis with 90 % of the resistance of the overlapping profiles:

Design method for assembled profiles CR joint design – Continuous profile with local Reinforcement

★ Step 3 ⇒ Verification of resistance of the assembly at the ends of the overlap with $M_{l,Ed}$, $M_{ll,Ed}$, and the line loads introduced by K_i :

$$F_{Ed} = \frac{M_{B,Ed}}{2 \cdot a}$$

+ For downward loading: F_{Ed} = tension force on the webs :

 $\frac{M_{I,Ed}}{M_{B,Rd}} \le 1,00 \qquad \frac{M_{II,Ed}}{M_{B,Rd}} \le 1,00 \qquad \qquad \frac{F_{Ed}}{V_{w,Rd}} \le 1,00 \qquad \qquad \frac{M_{I,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{V_{w,Rd}} \le 1,25 \qquad \qquad \frac{M_{II,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{V_{w,Rd}} \le 1,25$

+ For uplift loading: F_{Ed} = compression force on the webs:

$$\frac{M_{I,Ed}}{M_{B,Rd}} \le 1,00 \qquad \frac{M_{II,Ed}}{M_{B,Rd}} \le 1,00 \qquad \frac{F_{Ed}}{R_{w,Rd,B}} \le 1,00 \qquad \frac{M_{I,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{R_{w,Rd,B}} \le 1,25 \qquad \frac{M_{II,Ed}}{M_{B,Rd}} + \frac{F_{Ed}}{R_{w,Rd,B}} \le 1,25$$

Both cases of loading considering the resistance values of the profile in the opposite position at intermediate supports

♦ Step 4 ⇒ Verification of web crippling:

- Uplift loading = no verification of web-crippling is needed
- Downward loading:
 - With R_{w,Rk,B} of the opposite profile position (in general negative position) for the maximum support width, in general I_{aB} = 160 mm:

$$F_{Ed} = M_{B,Ed} / (2 \cdot a) < 0.5 \cdot R_{w,Rk,B}$$

Step 5 ⇒ Verification of the connection K_{Ed} for both cases of loading (in one web):

$$K_{Ed} = \max K_i = \frac{|M_{B,Ed}|}{4 \cdot a \cdot \sin \varphi} \cdot b_R \le \sum F_{V,Rd}$$

Assembled profiles

Ph. D. Thibault RENAUX – Joris Ide

