GRISPE PLUS VALORISATION OF KNOWLEDGE FOR SPECIFIC PROFILED STEEL SHEETS

WP Nr.: 3

WP Titel: E-Lectures

Deliverable Nr.: D3.1

Titel: Perforierte Trapezprofile

Datum: 31. März 2018

Das GRISPE PLUS Projekt wurde vom Forschungsfonds der Europäischen Gemeinschaft für Kohle und Stahl (RFCS) im Rahmen der Förderungsvereinbarung Nr. 754092 unterstützt

Autor(en)

Sokol Palisson Berater, Anna Palisson

Zeichnungshistorie

ENTWURF Nr. 1 – Datum: ENTWURF Nr. 2 – Datum: ENDFASSUNG – Datum: 31. März 2018

Verbreitungsgrad							
öffentlich							
Beschränkt au	f die Ko	ommissio	nsdienststellen,	die Technischen	Gruppen		
Kohle und Stahl und das Europäische Komitee für Normung (CEN).							
Beschränkt auf eine von den Begünstigten angegebene Gruppe							
Vertraulich,	nur	für	Begünstigte	(einschließlich	der		
Kommissionsdie	enststelle	n)					
	itungsgrad öffentlich Beschränkt au Kohle und Stah Beschränkt auf Vertraulich, Kommissionsdie	itungsgrad öffentlich Beschränkt auf die Ko Kohle und Stahl und das Beschränkt auf eine von Vertraulich, nur Kommissionsdienststelle	itungsgrad öffentlich Beschränkt auf die Kommissio Kohle und Stahl und das Europäi Beschränkt auf eine von den Beg Vertraulich, nur für Kommissionsdienststellen)	itungsgrad öffentlich Beschränkt auf die Kommissionsdienststellen, Kohle und Stahl und das Europäische Komitee für Beschränkt auf eine von den Begünstigten angege Vertraulich, nur für Begünstigte Kommissionsdienststellen)	itungsgrad öffentlich Beschränkt auf die Kommissionsdienststellen, die Technischen Kohle und Stahl und das Europäische Komitee für Normung (CEN). Beschränkt auf eine von den Begünstigten angegebene Gruppe Vertraulich, nur für Begünstigte (einschließlich Kommissionsdienststellen)	itungsgrad öffentlich Beschränkt auf die Kommissionsdienststellen, die Technischen Gruppen Kohle und Stahl und das Europäische Komitee für Normung (CEN). Beschränkt auf eine von den Begünstigten angegebene Gruppe Vertraulich, nur für Begünstigte (einschließlich der Kommissionsdienststellen)	

Perforierte Profile

DISCLAIMER NOTICE AND EU ACKNOWLEDGEMENT OF SUPPORT

Disclaimer notice

By making use of any information or content in this manual you agree to the following:

No warranties

All the information or content provided in this manual is provided "as is" and with no warranties. No express or implies warranties of any type, including for example implied warranties of merchantability or fitness for a particular purpose, are made with respect to the information or content, or any use of the information or content in this manual.

The authors make no representations or extend no warranties of any type as to the completeness, accuracy, reliability, suitability or timeliness of any information or content in this manual.

Disclaimer of liability

This manual is for informational purposes only. It is your responsibility to independently determine whether to perform, use or adopt any of the information or content in this manual.

The authors specifically disclaim liability for incidental or consequential damages and assume no responsibility or liability for any loss or damage suffered by any person as a result of the use or misuse of any of the information or content in this manual.

The authors will not be liable to you for any loss or damage including without limitation direct, indirect, special or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or loss of business, production, revenue, income, profits, commercial opportunities, reputation or goodwill, arising out of, or in connection with, the use of the information or content in this manual.

The authors do not represent, warrant, undertake or guarantee that the use of the information or content in this manual will lead to any particular outcome or results.

Reasonableness

By using this manual, you agree that the exclusions and limitations of liability set out in this disclaimer are reasonable. If you do not think they are reasonable, you must not use this manual.

Severability

If any part of this disclaimer is declared unenforceable or invalid, the remainder will continue to be valid and enforceable.

"The information and views set out in this report, article, guide, etc. (select the correct word) are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information or views contained therein"

EU acknowledgement of support

The GRISPE project has received financial support from the European Community's Research Fund for Coal and Steel (RFCS)under grant agreement n° 75 4092.

Perforierte Profile

ZUSAMMENFASSUNG

Ziel dieser Bemessungsregel ist es, ein neues Bemessungsverfahren für perforierte Profilbleche vorzustellen, welche in dem europäischen Projekt GRISPE PLUS entwickelt wurde.

Die Regeln basieren auf den Grundsätzen des Eurocodes im Allgemeinen und den Eurocodes EN 1993-1-3 und EN 1993-1-5 im Besonderen.

Dieses neue Bemessungsverfahren für perforierte Profile basiert auf Versuchen, die im Rahmen des europäischen GRISPE-Projekts (2013-2016) durchgeführt wurden.

Der Hintergrund dieses Verfahrens ist in Anhang 1 beschrieben.

Kapitel 1 beschreibt die Art der Profile, den Stand der Technik, die wichtigsten Forschungsergebnisse von GRISPE und die allgemeinen Bemessungsanforderungen und -regeln;

Kapitel 2 beschreibt die Vorbemessungen, die während der Entwurfsphase zu berücksichtigen sind, insbesondere die Überprüfung des Anwendungsbereichs des neuen Bemessungsverfahrens;

Kapitel 3 gibt die technischen Anforderungen an, die eingehalten werden müssen, einschließlich Unterkonstruktion, Profileigenschaften und Montage;

Kapitel 4 gibt die Materialeigenschaften der Profile an;

Kapitel 5 berücksichtigt die Einwirkungen und Lastfallkombinationen;

Kapitel 6 gibt die Bemessungsgrundlagen an;

Kapitel 7 berücksichtigt besondere Bemessungsbetrachtungen;

Kapitel 8 erläutert die Softwareberechnung für perforierte Profilbleche;

Kapitel 9 enthält ein Bemessungsbespiel des neuen Bemessungsverfahrens;

Kapitel 10 zeigt die automatische Überprüfung der Software.

Ein Literaturverzeichnis und ein Anhang sind enthalten.

VORWORT

Diese Bemessungsregeln wurden mit Unterstützung der RFCS-Förderung Nr. 754092 erstellt.

Diese neue Bemessungsmethode wurde in der Evolutionsgruppe der EN 1993-1-3 in den Jahren 2016-2017 vorgestellt und wird für die Aufnahme in die Eurocodes in Betracht gezogen.

Diese Bemessungsregeln wurde von Anna PALISSON verfasst und in einer GRISPE PLUS Arbeitsgruppe diskutiert, die sich aus folgenden Mitgliedern zusammensetzt:

Mickaël BLANC	Frankreich
Silvia CAPRILI	Italien
David IZABEL	Frankreich
Markus KUHNENNE	Deutschland
Anna PALISSON	Frankreich
Valérie PRUDOR	Frankreich
Irene PUNCELLO	Italien
Dominik PYSCHNY	Deutschland
Thibaut RENAUX	Frankreich
Daniel SPAGNI	Frankreich

ABBILDUNGEN

Die Abbildungen stammen aus folgenden Quellen:

- Abbildung 1.1.1 JORIS IDE
- Abbildung 1.1.2 KIT
- Abbildung 1.1.3 KIT
- Abbildung 1.3.1 bis Abbildung 1.3.12 KIT
- Abbildung 2.2.1.1 Kopie aus EN 1993-1-3
- Abbildung 2.2.2.1 Kopie aus EN 1993-1-3
- Abbildung 6.2.1 Sokol Palisson Berater
- Abbildung 6.2.2 Sokol Palisson Berater
- Abbildung 6.3.2.1 Kopie aus EN 1993-1-3
- Abbildung 8.1 Sokol Palisson Berater
- Abbildung 8.1.1 Sokol Palisson Berater
- Abbildung 8.1.2 Sokol Palisson Berater
- Abbildung 8.1.3 Kopie aus EN 1993-1-3
- Abbildung 9.1- Sokol Palisson Berater
- Abbildung 9.1.1- Sokol Palisson Berater
- Abbildung 9.1.3.1- Sokol Palisson Berater
- Abbildung 9.2.1 Kopie aus EN 1993-1-3
- Abbildung 9.3.1.1 Kopie aus EN 1993-1-3
- Abbildung 9.3.1.2 Kopie aus EN 1993-1-3

Perforierte Profile

Abbildung 9.3.1.1 - Sokol Palisson Berater

Abbildung 9.5.1 – Kopie aus EN 1993-1-3

Abbildung 9.5.2 – Kopie aus EN 1993-1-3

INHALTSVERZEICHNIS

Bezeichnun	gen7
1. EINL	EITUNG
1.1. Art	der Profilbleche
1.2. Sta	nd der Technik vor GRISPE
1.3. Hau	ptergebnisse von GRISPE9
1.4. Allg	emeine Bemessungsanforderungen und -regeln 13
2. VORİ	BERLEGUNG - VORBEMESSUNG 13
2.1. Anv	vendungsbereich des neuen Bemessungsverfahrens 13
2.2. Teo	hnologische Anordnungen der Profilbleche14
2.2.1.	Profilformen
2.2.2.	Cross-section dimensions Erreur ! Signet non défini.
3. TECH	NISCHE GRUNDLAGEN
4. MATE	RIALEIGENSCHAFTEN
5. EINW	IRKUNGEN UND BELASTUNGSKOMBINATIONEN15
6. BEME	SSUNGSGRUNDLAGE
6.1. Gru	ndlagen
6.2. Anv	vendungsbereich des neuen Bemessungsverfahrens 15
6.3. Ber	nessungsverfahren
6.3.1.	Bruttoquerschnitt mit quadratisch angeordneten Perforationen 16
6 2 2	
6.3.2.	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen
6.3.2. 6.3.3.	Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16
6.3.2. 6.3.3. 6.3.4. Perforat	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten onen
6.3.2. 6.3.3. 6.3.4. Perforat 6.3.5.	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA⁻ 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten Ionen 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 ITERUNG DER SOFTWAREBERECHNUNG 17 ITA ITA
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 UTERUNG DER SOFTWAREBERECHNUNG 17 FA Erreur ! Signet non défini. 20 20
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 9. BEME 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 9. BEME 9.1. Pro 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten onen Nombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 UTERUNG DER SOFTWAREBERECHNUNG 17 ITA Erreur ! Signet non défini. 20 ebnisse 20 20 SSUNGSBEISPIEL 20 20 filquerschnitt 21 21
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 9. BEME 9.1. Pro 9.1.1. 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 UTERUNG DER SOFTWAREBERECHNUNG 17 FA Erreur ! Signet non défini. erprüfung der geometrischen Verhältnisse 20 SSUNGSBEISPIEL 20 filquerschnitt 21 Angaben zum Profil 21
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 9. BEME 9.1. Pro 9.1.1. 9.1.2. 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 UTERUNG DER SOFTWAREBERECHNUNG 17 FA Erreur ! Signet non défini. erprüfung der geometrischen Verhältnisse 20 SSUNGSBEISPIEL 20 filquerschnitt 21 Angaben zum Profil 21 Überprüfung der geometrischen Verhältnisse 21
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 9. BEME 9.1. Pro 9.1.1. 9.1.2. 9.1.3. 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 VUTERUNG DER SOFTWAREBERECHNUNG 17 Freur ! Signet non défini. 20 ebnisse 20 SSUNGSBEISPIEL 20 filquerschnitt 21 Angaben zum Profil 21 Überprüfung der geometrischen Verhältnisse 22 Muster der Perforation 22
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 9. BEME 9.1. Pro 9.1.1. 9.1.2. 9.1.3. 9.2. Ber 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten onen 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 VITERUNG DER SOFTWAREBERECHNUNG 17 FA Erreur ! Signet non défini. erprüfung der geometrischen Verhältnisse 20 SSUNGSBEISPIEL 20 filquerschnitt. 21 Angaben zum Profil 21 Überprüfung der geometrischen Verhältnisse 22 Muster der Perforation 22 rechnung der Bruttogesamtfläche Ag 22
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA⁷ 8.2. Übe 8.3. Erg 9. BEME 9.1. Prov 9.1.1. 9.1.2. 9.1.3. 9.2. Ber 9.3. Ber 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 UTERUNG DER SOFTWAREBERECHNUNG 17 FA Erreur ! Signet non défini. erprüfung der geometrischen Verhältnisse 20 SSUNGSBEISPIEL 20 filquerschnitt 21 Angaben zum Profil 21 Überprüfung der geometrischen Verhältnisse 22 Muster der Perforation 22 rechnung der Bruttogesamtfläche Ag 22 rechnung der wirksamen Querschnittsfläche Aeff. 23
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA⁷ 8.2. Übe 8.3. Erg 9. BEME 9.1. Prov 9.1.1. 9.1.2. 9.1.3. 9.2. Ber 9.3. Ber 9.3.1. 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 UTERUNG DER SOFTWAREBERECHNUNG 17 FA Erreur ! Signet non défini. erprüfung der geometrischen Verhältnisse 20 SSUNGSBEISPIEL 20 filquerschnitt 21 Angaben zum Profil 21 Wuster der Perforation 22 rechnung der Bruttogesamtfläche Ag 22 rechnung der wirksamen Querschnittsfläche Aeff 23 Schritt 1 24
 6.3.2. 6.3.3. 6.3.4. Perforati 6.3.5. 7. BESO 8. ERLÄ 8.1. DA^T 8.2. Übe 8.3. Erg 9. BEME 9.1. Prov 9.1.1. 9.1.2. 9.1.3. 9.2. Ber 9.3. Ber 9.3.1. 9.3.2. 	Wirksamer Querschnitt mit quadratisch angeordneten Perforationen 16 Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen 16 Lokale Last- oder Stützreaktion eines Steges mit quadratisch angeordneten 17 Kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion 17 NDERE BEMESSUNGSBETRACHTUNGEN 17 UTERUNG DER SOFTWAREBERECHNUNG 17 FA Erreur ! Signet non défini. erprüfung der geometrischen Verhältnisse 20 ebnisse 20 SSUNGSBEISPIEL 20 filquerschnitt 21 Angaben zum Profil 21 Überprüfung der geometrischen Verhältnisse 22 Muster der Perforation 22 rechnung der Bruttogesamtfläche A _g 22 rechnung der wirksamen Querschnittsfläche A _{eff} 23 Schritt 1 24 Iteration: Nächste Schritte 28

Perforierte Profilbleche

GRISPE PLUS

9.5.	Berechnung der Querkrafttragfähigkeit am Endau	ıflager 29
10. AL	JTOMATISCHE KONTROLLE DER SOFTWARE	
10.1.	Berechnung der Momententragfähigkeit:	
10.2.	Berechnung der Tragfähigkeit am Endauflager	
11. Lit	eratur	Erreur ! Signet non défini.
Anhang .		Erreur ! Signet non défini.

UMFANG DER VERÖFFENTLICHUNG

Ziel dieser Veröffentlichung ist es, das neue Bemessungsverfahren für perforierte Profile vorzustellen, das zur Aufnahme in den Eurocode EN 1993-1-3 vorgeschlagen wurde.

Diese Bemessungsregeln befassen sich mit aktuellen Situationen.

Für spezielle Sachverhalte (z.B. Öffnung) oder für Ausnahmesituationen (Erdbeben, Feuer, etc.) sind die entsprechenden Bestimmungen der Eurocodes bzw. der EN 1090-4 zu beachten.

BEZEICHNUNGEN

Folgende Symbole werden verwendet:

- t : Bemessungsdicke
- $t_{\text{nom}}: Nennblechdicke$
- t_{eff}: Wirksame Dicke
- h_w: Profilhöhe
- h_a : Steghöhe oberhalb der Aussteifung
- h_{sa} : Höhe der Aussteifung im Steg
- d_s : Höhe der Aussteifung im Gurt
- d : Durchmesser der Perforation
- a : Abstand zwischen den Mittelpunkten der Perforationen
- f_{yb} : Streckgrenze
- E: E-Modul
- t_{red} : Reduzierte Dicke
- b_{pi} : Nennwert der geraden Breite
- b_{i,eff}: Wirksame Breite
- Ag: Bruttoquerschnittsfläche
- A_{eff} : Wirksame Fläche
- z_{G} : Lage der neutralen Achse
- σ_{xx} : Spannung
- χ d : Abminderungsfaktor für Forminstabilität
- M_{c,Rd} : Momententragfähigkeit
- M_{span}: Momententragfähigkeit im Feld
- e_c : Höhe der Druckzone bis zur neutralen Achse
- sper: Breite des perforierten Teils des Steges
- s_n : Breite des Steges in der Druckzone bis zur neutralen Achse
- s_{eff} : Wirksame Breite des Steges
- W_{eff}: Wirksames Widerstandsmoment
- R_{w,Rd} : Querkrafttragfähigkeit

Perforierte Profilbleche

GRISPE PLUS

1. EINLEITUNG

1.1. Art der Profilbleche

Die Bemessungsregeln behandeln Trapezprofile (Abbildung 1.1.1) mit quadratisch angeordneten Perforationen in den Gurten (Abbildung 1.1.2) oder in den Stegen (Abbildung 1.1.3).

Abbildung 1.1.1 – Trapezprofil

Abbildung 1.1.2 – Trapezprofil mit quadratisch angeordneten Perforationen in den oberen Gurten

Abbildung 1.1.3 – Trapezprofil mit quadratisch angeordneten Perforationen in den Stegen

1.2. Stand der Technik vor GRISPE

Perforierte Profile werden zunehmend als Innenschale der Gebäudehülle eingesetzt, um die Akustik zu verbessern. Für diese Art der Anwendung wurden verschiedene Typen und Geometrien von Perforationen für den Profilsteg und den oberen Gurt entwickelt.

Die europäische Norm EN 1993-1-3 deckt in Kapitel 10.4 nur ebene Wände mit einer Lochanordnung in Form von gleichschenkligen Dreiecken ab, während es auf dem Markt viele Bleche mit abgewandelter Lochverteilung gibt.

Es existieren in [1], [2], [3], [4], [5] bereits mehrere Studien zur dreieckigen Lochanordnung. Was die quadratischen Musterperforationen betrifft, so liefern erste Untersuchungen am KIT in Deutschland [2], [3] einige nützliche Informationen über die wirksame Breite und den Widerstand gegen Stegkrüppeln. Sie basieren auf einer numerischen Computeranalyse, die nicht sofort zur analytischen Berechnung führt und erweitert werden muss, um die derzeit auf dem Markt befindlichen Lösungen abzudecken.

Eine Möglichkeit die Bleche mit quadratischer Lochanordnung zu bemessen, ist die Ermittlung von Widerstandswerten durch Versuche, die viel Zeit in Anspruch nehmen und teuer sind.

1.3. Zentrale Ergebnisse von GRISPE

Zur Ermittlung und zum Vergleich der Tragfähigkeit von Stahlprofilen mit und ohne Perforation wurde ein umfangreiches Programm von 224 Versuchen nach EN 1993-1-3 Anhang A an Stahltrapezprofilen durchgeführt (Abbildung 1.3.1 bis Abbildung 1.3.4):

- mit quadratisch angeordneten Perforationen in den Stegen
- mit quadratisch angeordneten Perforationen in den Gurten
- ohne Perforationen

Darüber hinaus wurden 48 Versuche an Probekörpern ohne, mit quadratisch und mit dreieckig angeordneten Perforationen durchgeführt, um deren Einfluss auf das lokale Verhalten zu ermitteln.

Die Analyse dieser Versuche erlaubte es, die wirksame Dicke für Bleche mit im Quadrat angeordneten Perforationen als Funktion der wirksamen Dicke für Bleche mit im Dreieck angeordneten Perforationen zu definieren und sich an eine im Quadrat angeordnete Perforation anzupassen, wobei die in EN 1993-1-3 definierten Formeln für Perforationen im Dreieck angeordnet sind. Diese innovativen Formeln konnten durch eine detaillierte Analyse der globalen Versuchsergebnisse validiert werden. Es wurden Bemessungsverfahren entwickelt, um die Momententragfähigkeit Widerstand im Feld, den gegen Stegkrüppeln und die Momententragfähigkeit des Profils mit Perforationen (im Gurt oder im Steg) zu bestimmen, die vorher nicht bestimmt werden konnten.

Abbildung 1.3.1 – Einfeldträgerversuch am Profil ohne Perforation

Abbildung 1.3.2 – Einfeldträgerversuch am Profil mit Perforation im Steg

Abbildung 1.3.3 – Einfeldträgerversuch am Profil mit Perforation im Gurt

Abbildung 1.3.4 – Einfeldträgerversuch am Profil mit vollständiger Perforation

Abbildung 1.3.5 – Endauflagerversuch am Profil ohne Perforation

Abbildung 1.3.6 – Endauflagerversuch am Profil mit Perforationen im Steg

Abbildung 1.3.7 – Endauflagerversuch am Profil mit Perforationen im Gurt

Abbildung 1.3.8 – Endauflagerversuch am Profil mit vollständiger Perforationen

Abbildung 1.3.9 - Zwischenauflagerversuch am Profil ohne Perforation

Abbildung 1.3.10 – Zwischenauflagerversuch am Profil mit Perforationen im Steg

Abbildung 1.3.11 - Zwischenauflagerversuch am Profil mit Perforationen im Gurt

Abbildung 1.3.12 - Zwischenauflagerversuch am Profil mit vollständiger Perforation

1.4. Allgemeine Bemessungsanforderungen und -regeln

(1) Die Gestaltung von perforierten Profilen sollte den allgemeinen Regeln der EN 1993-1-1 entsprechen.

(2) Für die Grenzzustände der Tragfähigkeit und Gebrauchstauglichkeit nach EN 1993-1-3 sind geeignete Teilsicherheitsbeiwerte festzulegen.

2. VORBEMESSUNG

2.1. Anwendungsbereich des neuen Bemessungsverfahrens

In diesen Bemessungsregeln werden die Anforderungen an die Konstruktion von Trapezprofilen mit quadratisch angeordneten Perforationen in den Stegen oder in den Flanschen festgelegt. Die Ausführung von Stahlkonstruktionen aus Trapezprofilblechen ist in der EN 1090 geregelt.

In diesen Bemessungsregeln werden die Bemessungsverfahren beschrieben. Diese Verfahren gelten innerhalb der angegebenen Bereiche von Materialeigenschaften und geometrischen Abmessungen.

Diese Regeln beziehen sich nicht auf die Lastanordnung für Lasten während der Ausführung und Wartung.

Die in diesen Bemessungsregeln angegebenen Berechnungsverfahren sind nur gültig, wenn die Toleranzen der kaltgeformten Profile der EN 1993-1-3 entsprechen.

2.2. Technologische Anordnungen der Profilbleche

2.2.1. Profilformen

(1) Die Profilbleche haben innerhalb der zulässigen Toleranzen eine konstante Nennblechdicke über ihre gesamte Länge und können entweder einen gleichmäßigen oder einen gesickten Querschnitt haben.

(2) Die Querschnitte der Profilbleche bestehen im Wesentlichen aus einer Anzahl von ebenen Elementen, die durch gebogene Elemente verbunden sind.

(3) Beispiele für verschiedene Querschnitte sind in Abbildung 2.2.1.1. dargestellt.

Abbildung 2.2.1.1 – Beispiele von verschiedenen Profilquerschnitten

(4) Die Querschnitte können entweder unversteift sein oder Längsversteifungen in ihren Stegen, Gurten oder beiden Teilen enthalten.

2.2.2. Querschnittsabmessungen

Die Querschnittsabmessungen sollten den allgemeinen Anforderungen der EN 1993-1-3, Abschnitt 1.5.3 entsprechen.

- (1) Die Bemessungsdicke t ist eine Stahlkonstruktionsdicke (die gemessene Stahlkerndicke minus Toleranz, falls erforderlich, gemäß Abschnitt 3.2.4 der EN 1993-1-3), sofern nicht anders angegeben.
- (2) Das Bemessungsverfahren sollte nicht auf Querschnitte außerhalb des in der Tabelle 5.1 der EN 1993-1-3 angegebenen Bereichs der Breiten-/Dickenverhältnisse b/t, h/t, c/t und d/t angewendet werden.
- (3)

 Tabelle 2.2.2.1
 – Geometrische Anwendungsgrenzen

3. TECHNISCHE GRUNDLAGEN

Profilblech und CE-Kennzeichnung

Trapezprofilbleche sind nach der Norm EN 1090-1 CE-gekennzeichnet.

4. MATERIALEIGENSCHAFTEN

Stahlblech

Die Materialeigenschaften sollten den Anforderungen der EN 1993-1-3, Abschnitt 3 entsprechen.

Die üblichen Stahlsorten sind die Sorten S320GD + ZA und S350GD + ZA.

Die Profildicken sollten den Anforderungen der EN 1993-1-3, Abschnitt 3.2.4 entsprechen.

5. EINWIRKUNGEN UND LASTFALLKOMBINATIONEN

Die zu berücksichtigenden Einwirkungen und Lastfallkombinationen sind nach EN 1991-1-6 Eurocode 1: "Einwirkungen auf Tragwerke - Teil 1-6: Allgemeine Einwirkungen, Einwirkungen während der Bauausführung" festzulegen.

6. BEMESSUNGSGRUNDLAGE

6.1. Grundlagen

Dieses neue Bemessungsverfahren ist für Profile mit quadratisch in den Stegen oder in den Gurten angeordneten Perforationen:

- Momententragfähigkeit
- Widerstand gegen örtliche Lasteinleitung oder Lagerreaktion
- Widerstand gegen die kombinierte Beanspruchung aus Biegung und lokaler Lasteinleitung oder Lagerreaktion

6.2. Anwendungsbereich des neuen Bemessungsverfahrens

Dieses neue Bemessungsverfahren ist für Bleche mit quadratisch angeordneten Perforationen (Abbildung 6.2.1) in den Stegen oder den Gurten (Abbildung 6.2.2).

Anwendungsbereich: $0.2 \leq d/a \leq 0.9$

Abbildung 6.2.1 – Quadratisch angeordnete Perforationen

Abbildung 6.2.2 – Profile mit Perforationen im Steg (links) oder im Gurt (rechts)

6.3. Bemessungsverfahren

6.3.1. Bruttoquerschnitt mit quadratisch angeordneten Perforationen

Die Dicke des Bruttoquerschnitts wird nach EN 1993-1-3 Abschnitt 5.1 berechnet, wobei t durch $t_{a,eff}$ ersetzt wird:

$$t_{a,eff} = 1,09t \left(1 - \frac{1,03d}{a}\right)$$

Mit:

d Durchmesser der Perforation;

a Abstand zwischen den Mittelpunkten der Perforationen (Abbildung 6.2.1).

6.3.2. Wirksamer Querschnitt mit quadratisch angeordneten Perforationen

Die wirksame Dicke wird nach EN 1993-1-3 Abschnitt 5 berechnet, wobei t durch $t_{b,eff}$ ersetzt wird:

$$t_{\rm b,eff} = t \sqrt[3]{1,18(1-d/a)}$$

Mit:

d Durchmesser der Perforation;

a Abstand zwischen den Mittelpunkten der Perforationen (Abbildung 6.2.1).

6.3.3. Momententragfähigkeit von Profilen mit quadratisch angeordneten Perforationen

Die Momententragfähigkeit eines Querschnitts für Biegung um eine Hauptachse $M_{c,Rd}$ wird nach EN 1993-1-3 Kapitel 6.1.4 "Biegung" wie folgt ermittelt:

 $M_{\rm c,Rd} = W_{\rm eff} f_{\rm yb} / \gamma_{\rm M0}$

Das wirksame Widerstandsmoment $W_{\rm eff}$ sollte mit dem wirksamen Querschnitt berechnet werden, der nur dem Biegemoment um die jeweilige Hauptachse unterliegt.

Die maximale Spannung $\sigma_{max,Ed} = f_{yb} / \gamma_{M0}$ und die Auswirkung von lokalem Beulen und Forminstabilität wird gemäß Abschnitt 5.5 und 7.1 berücksichtigt.

Örtliche Lasteinleitung oder Lagerreaktion eines Steges mit 6.3.4. guadratisch angeordneten Perforationen

Die lokale Querkrafttragfähigkeit eines Steges mit guadratisch angeordneten Perforationen wird nach der Formel (6.18) der EN 1993-1-3 berechnet.

$$R_{\rm w,Rd} = \alpha t^2 \sqrt{f_{\rm yb} E} \left(1 - 0.1\sqrt{r/t}\right) \left[0.5 + \sqrt{0.02 l_{\rm a}/t}\right] \left(2.4 + (\phi/90)^2\right) / \gamma_{\rm Ml}$$
(6.18)

$$c_{eff} = t \left[1 - (d/a)^2 s_{per} / s_w \right]^{3/2}$$

Jedoch wird t durch $t_{c.eff}$ ersetzt:

Mit:

Breite des perforierten Teils des Steges; s_{per} Gesamtbreite des Steges.

 s_w

6.3.5. Kombinierte Beanspruchung Biegung lokaler aus und Lasteinleitung oder Lagerreaktion

(1) Bei Profilen mit quadratisch angeordneten Lochungen können die Gleichungen (6.28a), (6.28b) und (6.28c) der EN 1993-1-3 verwendet werden:

 $M_{c,Rd}$ = Momententragfähigkeit ermittelt nach 6.3.3

 $R_{w,Rd}$ = Lokale Querkrafttragfähigkeit ermittelt nach 6.3.4

(2) Querschnitte, die der kombinierten Einwirkung eines Biegemoments M_{Ed} und einer Querkraft durch eine lokale Belastung oder Lagerreaktion F_{Ed} unterliegen, sollten folgende Anforderungen erfüllen:

$$M_{\rm Ed} / M_{\rm c,Rd} \leq 1$$

$$F_{\rm Ed} / R_{\rm w,Rd} \leq 1$$

$$\frac{M_{\rm Ed}}{M_{\rm c,Rd}} + \frac{F_{\rm Ed}}{R_{\rm w,Rd}} \leq 1,25$$

7. BESONDERE BEMESSUNGSBETRACHTUNGEN

Sachverhalte, die in diesen Bemessungsregeln nicht behandelt werden:

- Feuer •
- Erdbeben Seismische Berechnung
- Umweltaspekt
- Thermische Berechnung •
- Akustik
- Andere

8. ERLÄUTERUNG DER SOFTWAREBERECHNUNG

Die Software ermöglicht die Berechnung der Momententragfähigkeit im Feld und der Querkrafttragfähigkeit am Endauflager für ein Profil mit einer Aussteifung im oberen Gurt, mit einer Aussteifung im Steg und mit quadratisch angeordneten Perforationen im Steg.

Abbildung 8.1. - Profil mit einer Aussteifung im Obergurt, einer Aussteifung im Steg und mit quadratisch angeordneten Perforationen im Steg

8.1. Parameter

Alle roten Zellen müssen mit den Profilabmessungen (Abbildung 8.1.1 und 8.1.2) gefüllt werden. Dazu gehört: Innenradius R, Winkel θ , Winkel vom Steg zum Gurt ϕ , Blechdicke t, Nennblechdicke t_{nom}, Breite, Steghöhe h_w, Höhe des Steges bis zur Aussteifung h_a, Höhe der Aussteifung h_{sa}, Höhe der Gurtaussteifung d_s, Streckgrenze f_{yb}, E-Modul, Durchmesser der Perforationen *d*; Abstand zwischen den Mittelpunkten der Perforationen *a*, Breite des perforierten Teils des Steges s_{per}:

R1 (mm) 6	θ_1 (rad)	R2 _{sup} (mm)	R2 _{inf} (mm)	θ_2 (ra	ad)	R3 (mm)	θ ₃ (r	ad)	φ (rad)
t _{nom} (mm)	t (mm)	Pitch (m	m) h _w (mn	n)	h _a (mr	n)	h _{sa} (n	ım)	d _s ((mm)
f _{yb} (N/mm ²)	E (N/mm ²)	Υ _{M0}	a (mm)	d (1	mm)	s _{per} (mm)]		

Tabelle 8.1.1 - Exceltabelle, in die die Profilabmessungen eingetragen werden sollen

Abbildung 8.1.1 – Perforationsmuster

Es sind die roten Felder der folgenden Tabelle mit den Abmessungen (b_{pi}) aller Elemente von einer halben Profilwelle auszufüllen. Die Elementnummern sind in der Abbildung 8.1.2 angegeben. Die Länge der Elemente wird vom Mittelpunkt " P " der benachbarten Eckelemente gemessen, wie in Abbildung 8.1.3 angegeben.

Element	b _{pi} (mm)
1	
2	
3	
4	
5	
6	
7	

Abbildung 8.1.2 - Elementnummern und Parameter

Abbildung 8.1.3 - Länge der Elemente, gemessen vom Mittelpunkt " P "

8.2. Überprüfung der geometrischen Verhältnisse

Die rote Zelle in Tabelle 8.2.1 ist mit der Abmessung der Breite b zu füllen.

Die Software zeigt automatisch die Kontrolle der geometrischen Verhältnisse an.

Tabelle 8.2.1 - Automatische Überprüfung der geometrischen Verhältnisse

8.3. Ergebnisse

Die Software zeigt die Ergebnisse automatisch an:

⇒ Momententragfähigkeit im Feld
 ⇒ Querkrafttragfähigkeit am Endauflager
 Rendsupport= xxx kN/m

9. BEMESSUNGSBEISPIEL

Dieses Beispiel zeigt, wie man mit Stahlprofilen mit quadratisch angeordneten Perforationen in den Stegen umgeht, wenn man die Biegetragfähigkeit und den Stegbruchwiderstand eines Bleches mit einer Aussteifung im oberen Gurt und einer Aussteifung im Steg ermittelt.

Abbildung 9.1 - Profil mit einer Aussteifung im Obergurt, einer Aussteifung im Steg und mit quadratisch angeordneten Perforationen im Steg.

9.1. Profilquerschnitt

Abbildung 9.1.1 - Profilquerschnitt

9.1.1. Angaben zum Profil

320

210000

Das Beispiel basiert auf der Berechnung der Momententragfähigkeit im Feld eines Profils mit den folgenden Daten:

R1 (mm)	θ_1	(rad)	R2 _{sup} (mm)	R2 _{in}	_f (mm)	θ_2 (ra	d)	R3 (r	nm)	θ_3 (rad))	φ(rad)
0)	0.22	6		6		1.31		3	0	.99	1.27
t _{nom} (m	m)	t (mm)	Pitch (1	mm)	h _w (m	nm)	h _a (mr	n)	h _{sa} (mm)	ds	(mm)
0	.75	0.7	1	195		73		45		9		3
f	+ (N	(/mm ²) E	$E(N/mm^2)$	Vvio		a (m	m)	d (m	m)	S (1	nm)

Tabelle	9.1.1.1	– Angahen	zum Profil
rabene	J. I. I. I.	Anguben	20111110111

1

11.30

5.00

46.64

Element	b _{pi} (mm)
1	0.00
2	15.30
3	47.50
4	45.44
5	10.34
6	18.52
7	12.00

Tabelle 9.1.1.2 – Abmessungen der einzelnen Elemente

9.1.2. Überprüfung der geometrischen Verhältnisse

b = 125; t = 0.71; h = 73; f_y = 320

Tabelle 9.1.2.1 – Überprüfung der geometrischen Verhältnisse

9.1.3. Muster der Perforation

Abbildung 9.1.3.1 - Perforationsmuster

d/a = 0.4Überprüfung der Anwendungsgrenze : $0.2 \le d/a \le 0.9$

9.2. Berechnung der Bruttogesamtfläche Ag

Die Dicke des Bruttoquerschnitts wird nach EN 1993-1-3 Abschnitt 5.1 berechnet, wobei t durch $t_{\text{a,eff}}$ ersetzt wird:

$$t_{a,eff} = 1,09t \left(1 - \frac{1,03d}{a}\right)$$

Mit:

d Durchmesser der Perforation;

a Abstand zwischen den Mittelpunkten der Perforationen (Abbildung 9.1.3.1).

 A_{g} ist die Summe der Flächen der einzelnen Elemente (Länge x t)

Länge = $I_i = b_p - r_m x \sin \pi/4$

(a) Mittelpunkt der Eckausrundung

X ist der Schnittpunkt der Mittellinien P ist der Mittelpunkt der Ecke

 $r_{\rm m} = r + t / 2$

Abbildung 9.2.1 -	Nennbreiten der	ebenen	Querschnittsteile	<i>b_p unter</i>	Berücksichtigung	von
		Ecke	enradien			

Element	l _i (mm)	A _i (mm ²)	z(mm)	S _i (mm ³)	z0(mm)
1	0.0	0.0	70.0	0.00	-18.5
Corner 1 _{inf}	0.0	0.0	70.0	0.00	-18.5
2	15.3	10.9	71.5	776.56	-20.0
Corner 1 _{sup}	0.0	0.0	73.0	0.00	-21.5
3	43.8	31.1	73.0	2272.61	-21.5
Corner 2 _{sup}	7.9	5.6	71.4	398.30	-19.9
4	40.4	17.0	50.5	858.37	1.0
Corner 3 _{sup}	3.0	1.3	28.0	35.18	23.5
5	7.5	3.2	23.5	74.03	28.0
Corner 3 _{inf}	3.0	1.3	19.0	23.87	32.5
6	13.4	5.7	9.5	53.77	42.0
Corner 2 _{inf}	7.9	5.6	1.6	8.77	49.9
7	8.3	5.9	0.0	0.00	51.5
TOTAL		87.4		4501.5	51.5

Tabelle 9.2.1 – Abmessungen der einzelnen Elemente

 $A_{\rm g} = 87.4 \ {\rm mm^2}$

Lage der neutralen Achse: $z_G = S / A_q = 51.5 \text{ mm}$

9.3. Berechnung der wirksamen Querschnittsfläche Aeff

Die wirksame Dicke wird nach EN 1993-1-3 Abschnitt 5 berechnet, wobei t durch $t_{\rm b,eff}$ ersetzt wird:

$$t_{\rm b,eff} = t \sqrt[3]{1,18(1-d/a)}$$

Mit:

d Durchmesser der Perforation;

a Abstand zwischen den Mittelpunkten der Perforationen (Abbildung 9.1.3.1).

A_{eff} ist die Summe der wirksamen Flächen der einzelnen Elemente.

9.3.1. Schritt 1

Wirksame Querschnittsfläche des Obergurtes

Der obere Gurt hat eine Aussteifung. Der wirksame Querschnitt des Gurtes wird nach EN 1993-1-3 Kapitel 5.5.3.4.2 "Gurte mit Zwischenaussteifungen" berechnet.

Abbildung 9.3.1.1 - Gurt mit einfacher oder mehrfacher Aussteifung

Die Spannung im Obergurt beträgt: σ_{com} = f_{yb} X (h_w – z_G)/ z_G = 134 N / mm² b_p = 47.5 mm

$$\begin{split} \lambda_{p} &= b_{p}/t/(28.4 \ \epsilon k_{\sigma}^{1/2}) \ \text{with } \epsilon = (235/f_{yb})^{1/2} \\ \psi &= \sigma_{2}/\sigma_{1} = 1 \ \Rightarrow \ \text{Koeffizient } k_{\sigma} = 4 \\ \lambda_{p} &= 1.374 \\ \lambda_{pred} &= \lambda_{p} \times \sqrt{\frac{\sigma \ com}{fy/\gamma M0}} \ \Rightarrow \ \lambda_{pred1} = 0.888 \\ \rho &= \frac{1 - 0.055(3 + \psi)/\overline{\lambda}_{p,red}}{\overline{\lambda}_{p,red}} + 0.18 \ \frac{(\overline{\lambda}_{p} - \overline{\lambda}_{p,red})}{(\overline{\lambda}_{p} - 0.6)} \\ \Rightarrow \ \rho = 0.96 \\ b_{eff} &= \rho^{*} b_{p} = 45.6 \ \Rightarrow \ \overline{0.5 \ b_{eff} = 22.8 \ m} \end{split}$$

Aussteifung des Obergurtes:

Der Querschnitt der Aussteifung wird nach EN 1993-1-3 Kapitel 5.5.3.3 "Ebene Teilflächen mit Zwischensteifen" berechnet.

Die elastische kritische Spannung $\sigma_{cr,s}$ wird berechnet mit:

$$\sigma_{\rm cr,s} = \frac{4.2 \, k_{\rm w} E}{A_{\rm s}} \sqrt{\frac{I_{\rm s} t^3}{4 \, b_{\rm p}^2 \, \left(2 \, b_{\rm p} + 3 \, b_{\rm s}\right)}}$$

 $b_s = 30.6 \text{ mm}, b_p = 47.5 \text{ mm}$

Berechnung von A_s

Element	l _i (mm)	A _i (mm ²)
plane part	22.81	16.19
Corner 1 _{sup}	0.00	0.00
2	15.30	10.86
Corner 1 _{inf}	0.00	0.00
1	0.00	0.00
Corner 1 _{inf}	0.00	0.00
2	15.30	10.86
Corner 1 _{sup}	0.00	0.00
plane part	22.81	16.19
TOTAL		54.1

Tabelle 9.3.1.1 – Längen und Flächen der einzelnen Elemente

 $A_{s} = 54.1 \text{ mm}^{2}$

Berechnung von $I_{\mbox{\scriptsize s}}$

Element	l _i (mm)	A _i (mm ²)	z(mm)	S _i (mm ³)	z0(mm)	h	I _i (mm ⁴)
plane part	10.65	7.56	0.00	0.00	0.88	0.71	6.23
Corner 1 _{sup}	0.00	0.00	0.00	0.00	0.88	0.00	0.00
2	15.30	10.86	1.50	16.29	-0.62	3.30	13.95
Corner 1 inf	0.00	0.00	3.00	0.00	-2.12	0.00	0.00
1	0.00	0.00	3.00	0.00	-2.12	0.71	0.00
Corner 1 inf	0.00	0.00	3.00	0.00	-2.12	0.00	0.00
2	15.30	10.86	1.50	16.29	-0.62	3.30	13.95
Corner 1 _{sup}	0.00	0.00	0.00	0.00	0.88	0.00	0.00
plane part	10.65	7.56	0.00	0.00	0.88	0.71	6.23
TOTAL		36.8		32.6	0.88	1	40.4

Tabelle 9.3.1.2 – Flächenträgheitsmomente der einzelnen Elemente

 $I_{s} = 40.4 \text{ mm}^{4}$

$$l_{\rm b} = 3,07 \quad \sqrt[4]{\frac{I_s \ b_{\rm p}^2 \ \left(2 \ b_{\rm p} + 3 \ b_{\rm s}\right)}{t^3}}$$

 $l_b = 254.9$

$$s_w = 73.7$$

 $l_b / s_w = 3.5 \ge 2 \Rightarrow k_w = k_{wo}$

$$k_{\rm wo} = \sqrt{\frac{s_{\rm w} + 2 \ b_{\rm d}}{s_{\rm w}} + 0.5 \ b_{\rm d}}$$

 $k_{wo} = 1.54$

Elastische kritische Spannung $\sigma_{cr,s}$ = 74 N/mm²

 $\overline{\lambda}_{\rm d} = \sqrt{f_{\rm yb}/\sigma_{\rm cr,s}}$ $\overline{f}_{\rm d} = 1,77$

Perforierte Profilbleche

$$\overline{\lambda}_{\rm d} \ge 1,38 \Rightarrow \chi_{\rm d} = \frac{0,66}{\overline{\lambda}_{\rm d}}$$

Abminderungsfaktor für die Forminstabilität $\chi_{d} = 0,317$

Reduzierte Dicke $t_{red} = C_d t \frac{f_{yb}}{S_{com,Ed}}$

Reduzierte Dicke $t_{red} = 0.54 \text{ mm}$

Wirksame Fläche des Steges

Die wirksamen Flächen des Steges werden nach EN 1993-1-3 Kapitel 5.5.3.4.3 "Stege mit bis zu zwei Aussteifungen" berechnet.

Abbildung 9.3.1.2 - Wirksame Querschnittsfläche von trapezförmig profilierten Stegen

In diesem Beispiel ist die neutral Achse $z_g = 51.5$ mm und $h_a = 45$ mm und die Aussteifung des Steges somit unterhalb des Druckbereiches. Die wirksame Fläche darf als Steg ohne Versteifung berechnet werden.

$$e_c = h_w - z_G = 21,5 \text{ mm} \Rightarrow s_n = 21,3 \text{ mm}$$

$$\sigma_{\rm com} = f_{\rm vb} X (h_{\rm w} - z_{\rm G}) / z_{\rm G} = 134 \text{ N} / \text{mm}^2$$

Die wirksamen Querschnittswerte dürfen wahlweise durch Iteration weiter verbessert werden. Bei dieser Iteration sollte ein erhöhter Eingangswert für die wirksame Breite *s*_{eff,0} berechnet werden:

$$s_{\rm eff,0} = 0.95 t \sqrt{\frac{E}{\gamma_{\rm M0} \,\sigma_{\rm com,Ed}}}$$

→ s _{eff,0} = 22,0 mm

 $s_{eff,1} = s_{eff,0} \rightarrow s_{eff,1} = 22.0 \text{ mm}$

s _{eff,n} = 1.5 s _{eff,0} → s _{eff,n} = 33.0 mm → $s_{eff,1} + s_{eff,n} \ge s_n$ Der Steg ist voll wirksam $s_{eff,1} = 0,4s_n$ $s_{eff,n} = 0,6s_n$

Wirksame Fläche des Untergurtes

Der Untergurt ist unter Zugbelastung → alle Breiten sind voll wirksam

Wirksame Gesamtfläche

Berechnung von A_{eff}

Abbildung 9.3.1.3 – einzelne Elementnummern

Element	l _i (mm)	t _{eff} (mm)	A _i (mm ²)	z(mm)	S _i (mm ³)	z0(mm)
1	0.0	0.54	0.00	70.00	0.00	-21.94
Corner 1 _{inf}	0.0	0.54	0.00	70.00	0.00	-21.94
2	15.3	0.54	8.24	71.50	589.16	-23.44
Corner 1 _{sup}	0.0	0.54	0.00	73.00	0.00	-24.94
31	23.8	0.54	12.79	73.00	933.91	-24.94
32	19.2	0.71	13.60	73.00	992.85	-24.94
Corner 2 _{sup}	7.9	0.71	5.58	71.43	398.30	-23.36
4	40.4	0.58	23.53	50.50	1188.30	-2.44
Corner 3 _{sup}	3.0	0.58	1.74	28.00	48.70	20.06
5	7.5	0.58	4.36	23.50	102.48	24.56
Corner 3 _{inf}	3.0	0.58	1.74	19.00	33.05	29.06
6	13.4	0.58	7.84	9.50	74.44	38.56
Corner 2 _{inf}	7.9	0.71	5.58	1.57	8.77	46.49
7	8.3	0.71	5.93	0.00	0.00	48.06
TOTAL			90.9		4370.0	48.1

Tabelle 9.3.1.3 – Länge und Fläche der einzelnen Elemente

Die Lage der neutralen Achse vom wirksamen Querschnitt beträgt: $z_G = 48.1 \text{ mm}$

9.3.2. Iteration: Nächste Schritte

In den nächsten Schritten wird die neue Position der neutralen Achse des wirksamen Querschnitts mit dem neuen $\sigma_{\rm com}$ bestimmt.

Die wirksame Querschnittsfläche des Obergurtes wird wie in Schritt 1 berechnet, jedoch unter Berücksichtigung des neuen $\sigma_{\rm com}$, welches mit der aktuell iterierten Position der neutralen Achse z_c berechnet wird.

Die wirksame Querschnittsfläche vom Steg wird ebenfalls wie in Schritt 1 berechnet, wobei die neue Spannung σ_{com} mit der neuen Position der neutralen Achse berechnet wird.

Der Untergurt ist weiterhin vollständig unter Zugbelastung und alle Breiten sind voll wirksam.

Alle Werte der Schritte 2, 3 und 4 sind in der folgenden Tabelle angegeben. Die Konvergenz wird in Schritt 4 als zufriedenstellend angesehen und die Iteration endet in Schritt 4.

		2nd step	3rd step	4th step
Upper flange	$\sigma_{ m com}$	166	177	179
	ρ	0.875	0.851	0.844
	0,5 b 1,eff	20.78	20.20	20.05
Upper flange stiffener	$\sigma_{\sigma,s}$	77.75	79.02	79.35
2.02 55	Xd	0.33	0.33	0.33
5	tred	0.45	0.42	0.42
Web	ec	24.9	26.0	26.2
	sn	24.9	25.9	26.2
	Sett,0	19.7	19.1	19.0
	Sett,1	19.7	19.1	19.0
	Sett,n	29.6	28.7	28.4
	Seff,1 + Seff,n	49.3	47.8	47.4
		entire web is effective	entire web is effective	entire web is effective
	Sett,1	0,4sn	0,4sn	0,4sn
	Seff,n	0,6sn	0,6sn	0,6sn
Total effective Area	A eff	87.3	86.4	86.1
Position of neutral axis	zc	47.0	46.8	46.7

Tabelle 9.3.2.1 – Ergebnisse der Schritte 2,3 und 4

9.4. Berechnung der Momententragfähigkeit

Die Momententragfähigkeit wird mit den Daten aus Schritt 4 berechnet:

Element	1, (mm)	terr(mm)	A _i (mm ²)	z(mm)	$S_i(mm^3)$	z0(mm)	h	$I_i(mm^4)$
1	0.0	0.42	0.0	70.00	0.00	-23.29	0.71	0.00
Corner 1 _{inf}	0.0	0.42	0.0	70.00	0.00	-23.29	0.00	0.00
2	15.3	0.42	6.4	71.50	455.37	-24.79	3.30	3918.40
Corner 1 _{sup}	0.0	0.42	0.0	73.00	0.00	-26.29	0.00	0.00
31	23.8	0.42	9.9	73.00	721.84	-26.29	0.71	6832.62
32	19.2	0.71	13.6	73.00	992.85	-26.29	0.71	9397.89
Corner 2 _{sup}	7.9	0.71	5.6	71.43	398.30	-24.71	0.00	3405.73
4	40.4	0.58	23.5	50.50	1188.30	-3.79	38.98	3316.80
Corner 3 _{sup}	3.0	0.58	1.7	28.00	48.70	18.71	0.00	609.15
5	7.5	0.58	4.4	23.50	102.48	23.21	6.27	2364.40
Corner 3 _{inf}	3.0	0.58	1.7	19.00	33.05	27.71	0.00	1335.93
6	13.4	0.58	7.8	9.50	74.44	37.21	12.98	10961.71
Corner 2 _{inf}	7.9	0.71	5.6	1.57	8.77	45.14	0.00	11363.27
7	8.3	0.71	5.9	0.00	0.00	46.71	0.71	12933.53
TOTAL	all set to the		86.1		4024.1	46.7		66439.4

Tabelle 9.4.1 – Daten aus Schritt 4

Perforierte Profile

 $M_{\rm c,Rd} = W_{\rm eff} f_{\rm yb} / \gamma_{\rm M0}$

Für eine halbe Profilwelle $I_{eff} = 66439 \text{ mm}^4$

Für ein Profil $I_{eff} = 681 \text{ mm}^3$

v = max (46,7;26,3)=46,7 mm

 $W_{eff} = I_{eff} / v = 14.6 \text{ mm}^3$

 $M_c = 4,7 \text{ kNm/m}$

9.5. Berechnung der Querkrafttragfähigkeit am Endauflager

Die lokale Querkrafttragfähigkeit eines Steges mit quadratisch angeordneten Perforationen wird nach der Formel (6.18) der EN 1993-1-3 berechnet.

$$R_{\rm w,Rd} = \alpha t^2 \sqrt{f_{\rm yb} E} \left(1 - 0.1\sqrt{r/t}\right) \left[0.5 + \sqrt{0.02 l_{\rm a}/t}\right] \left(2.4 + (\phi/90)^2\right) / \gamma_{\rm Ml}$$
(6.18)
$$t_{\rm c,eff} = t \left[1 - (d/a)^2 s_{\rm per} / s_{\rm w}\right]^{3/2}$$

Jedoch wird t durch
$$t_{c,eff}$$
 ersetzt:

Mit:

*s*_{per} Länge des perforierten Teils des Steges;

*s*_w Gesamtlänge des Steges.

In diesem Beispiel ist die Lagerreaktion in einem Abstand $c \le 1,5 h_w$ vom freien Ende und daher der Kategorie 1 zu zuordnen.

Abbildung 9.5.1 - Lagerreaktion in einem Abstand $c \le 1,5 h_w$: Kategorie 1

Für Profilbleche der Kategorie 1 gilt: α = 0,075 und l_a = 10mm

Bei ausgesteiften Stegen kann die örtliche Beanspruchbarkeit durch Multiplikation der Beanspruchbarkeit des unausgesteiften Steges nach EN 1993-1-3 Kapitel 6.1.7.2 oder 6.1.7.3 mit dem Faktor $\kappa_{a,s}$ ermittelt werden:

 $\kappa_{a,s} = 1,45 - 0,05 \ e_{max} / t$ but $\kappa_{a,s} \le 0,95 + 35 \ 000 \ t^2 \ e_{min} / (b_d^2 \ s_p)$

Dabei ist

- $b_{\rm d}$ die Steglänge der ebenen Teilfläche des Steges direkt am belasteten Gurt, siehe Bild 6.10.
- e_{\min} die geringere Exzentrizität eines Steifeneckpunktes gegenüber der Verbindungslinie der Gurteckpunkte;
- $s_{\rm p}$ die Abwicklungslänge des belasteten Gurtes, siehe Bild 6.10;

Abbildung 9.5.2 - Ausgesteifte Stege

t = 0,71 mm r = 5 mm ϕ = 72 e_{min} = 0.804 mm b_d = 24 $\kappa_{a,s}$ = 1.278 Pro Steg : R_{w,Rd} = 713 N Profilwelle = 195 Pro Meter: R_{w,Rd} = 6,5 kN/m

10. AUTOMATISCHE KONTROLLE DER SOFTWARE

Die automatische Kontrolle basiert auf dem vorherigen Beispiel.

10.1. Berechnung der Momententragfähigkeit:

Das berechnete Feldmoment im vorigen Beispiel beträgt: M_{span} = 4.7 kNm/m

Das Ergebnis der Software ist: Mspan=

= 4.7 kNm/m

Die Ergebnisse sind identisch.

10.2. Berechnung der Tragfähigkeit am Endauflager

Die berechnete Endauflagerkraft im vorigen Beispiel beträgt: $R_{w,Rd} = 6.5 \text{ kN/m}$

Das Ergebnis der Software ist: Rendsupport= 6.5 kN/m

Die Ergebnisse sind identisch.

11. LITERATUR

[1] Baik S.C, Han H.N, Lee S.H, Oh K.H, Lee D.N, Plastic behaviour of perforated sheets under biaxial stress state, LNT J. Mech. Sc., vol39, No7, pp781-793, 1997.

[2] Misiek T. and Saal H. Load bearing capacity of perforated trapezoidal sheeting, stability and ductility of steel structure, Rio de Janeiro, Brazil, Sept. 2010.

[3] Kathage K., Misiek T., Saal H., Stiffness and critical buckling load of perforated sheeting, Thin-Walled Structures, 44, 2006.

[4] Lee Y.C., Chen F.K., Yield criterion for a perforated sheet with a uniform triangular pattern of round holes and a low ligament ratio, NTU Publ., Febr. 1999.

[5] Degtyarev V.V, Degtyareva N.V., Eleastic stability of uniformally compressed plates perforated in triangular pattern, Thin-Walled Structures, 52, 2012,

ANHANG 1

Hintergrund des neuen Bemessungsverfahrens für Profilbleche mit Perforierungen:

D3.1	GRISPE WP3 Hintergrunddokument	Anna PALISSON (Sokol Palisson Berater)				
D3.2	GRISPE WP3 Versuchsaufbau	Anna PALISSON (Sokol Palisson Berater)				
D3.3	GRISPE Versuchsprotokoll	Christian FAUTH (KIT)				
D3.4	GRISPE WP3 Analyse und Interpretation der Versuche	Anna PALISSON (Sokol Palisson Berater)				
D3.5	GRISPE WP3 Hintergrundinformation für EN 1993-1-3 zur Bemessung von Blechen mit Perforation oder mit Öffnung	Anna PALISSON (Sokol Palisson Berater)				