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(&) Introduction

‘I The present material complies with the current version of
¥ the EN 1993-1-3 and EN 1993-1-5.

h  The amendments proposed by GRISPE+ are not taken
‘( into account (see the other presentations of GRISPE+).

This training is an initiation to the design of cold formed
D . L :
‘( profiles. Some simplifications are provided to help the
learner.

“ Refer to the original Eurocode to have all the
( clauses that have to be applied.

‘( Take into account the national annex of each Eurocode.

‘l The material does not cover assemblies that also have to be
( checked (see EN 1993-1-3 and EN 1993-1-8).




Principles of cold
formed elements




() Principles of the cold formed elements

The principles are as follows :

~v Optimizing the material with thin metal sheet

Source: EMB

~v Providing inertia to the geometric shape of
the profiles as in the case of the shell

Source: EMB
~¢ Adding stiffeners to avoid local instability in the

compressed area (flanges, webs) / /
w N \_/ \_/ d Source: EN 1993-1-3

indentation

Section A - A

~v Adding embossments to facilitate the
liaison concrete and steel

Source: GRISPE project




Different types of
cold formed elements




(&) The two main families of profiles

~v The sheetings : ~t The members :

(cladding, roofing, covering, decking) (purlin column, cladding rail)
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Source: EN 1993-1-3 Source: EN 1993-1-3
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Manufacturing process
of cold formed elements




&) Manufacturing process of cold formed
elements

<t Profiling machine

T= 7

Source: EMB Source: EMB <t Profiling rollers




Using cold
formed elements
In construction




Using cold formed elements in construction (sheetings)

CLADDING

~t Single skin system

<tFacade cladding ~¢ Double skin system

Source: BIM Enveloppe métallique du bétiment




@ Using cold formed elements in construction (sheetings)

COVERING

o

< Single skin covering ~v Double skin covering

Source: BIM Enveloppe métallique du bétiment




@ Using cold formed elements in construction (sheetings)

ROOFING

W

<t Roofing system

Source: BIM Enveloppe métallique du bétiment




@ Using cold formed elements in construction (sheeting)

DECKING - COMPOSITE FLOOR

Source: BIM Enveloppe métallique du bétiment




@ Using cold formed elements in construction (members)

PORTAL FRAMES
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Source: EMB




@ Using cold formed elements in construction (members)

PORTAL FRAME
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~¢ Cladding rail
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Source: EN 1993-1-3




European standards
for cold formed
elements




(&) European standards for raw materials

“( EN 10143 ==) tolerances on the metal core tom

“( EN 10346 (Metallic coating) =) protection against corosion

“( EN 10169+A1 (Organic Coating) ™= protection against corosion




(S) CE marking of the product - CPR

“( For non structural products m=) Self supporting EN 14782
==) Fully supported EN 14783

e Class lll (Non structural use)
 EN508-1 (measurments in the production phase)

“( For structural products ==) EN 1090-1

e Class | (diaphragm use)
* Class Il (collaboration member/sheeting)




@ Design and erection of the systems and buildings

‘( Designing tests and calculations :

 EN 1993-1-3 + corigendum + National annex (general design)
 EN 1993-1-5 + corigendum + National annex (effective width)
 EN 1993-1-8 + corigendum + National annex (assemblies)

b
‘( Building erection :
e EN1090-4 (steel products)
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Profiled steel sheetings

covered by the
GRISPE"* project




@ Profiles covered by the GRISPE * project

~v Decking with embossments and /or indentations

indentation embossment
Section A - A Section A-A
A Detail B "
v =
I
AT
Source: Draft amendement Eurocode Source : Draft amendement Eurocode

~¢ Decking with outside stiffeners

015 < fyg

Ay

g1 = fyg

nenfral axis

o<y

Source: GRISPE WP1




@ Profiles covered by the GRISPE *project

— hNarow 18%3e

Source: EC3 1.3

~¢ The liner tray with s,> 1m distance
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Source: GRISPE WP2

Source: GRISPE WP2




@ Profiles covered by the GRISPE * project

<v Corrugated profiles

6= T3 =458

Fig (5) - Cross section of the profile 18/76

Fig (6) - Cross section of the profile 46/150

Source: GRISPE WP2




@ Profiles covered by the GRISPE * project

~v Curved profile with and without arch effect

e ———
o R
load distribution system
n ./
~v Key parameters for arch profiles ﬁﬁ,ﬂﬁ-ﬂ, ,F—J.-,.,,,,f
F__L*wt'_:i_______a_.c_ﬁﬂ' *éf,__,‘_i__b: --.h._br curved prof:e "
g — g orizonta
B % — —r T N g / support
“F1 & F2 7’9‘%
s | us | us | L/4 | us | us | us
| w2 | C w |

<t Mechanical model for arch profiles

Source: GRISPE WP2




@ Profiles covered by the GRISPE * project

~v Cantilever above profile ~t Overlapping joints
____________ f :;:‘:‘:‘:‘:‘:‘:‘ff:‘:‘:‘:‘:‘:‘:;:‘f-.__________
a=01-/ br P B ——
[ 2 - e »>

~¢ Cantilever underneath ~v Continuous profiles with local reinforcement

a=01-/ b

R
| 2

A
Y
A
A

A

Y

Source: GRISPE WP2




@ Assembled profiles

THETESTED ASSEMBLED PROFILES ARE:

50

— |
L1 - .
. L2 i
| L o - : L .
~¢ Continuous profiles (C) ~¢ Two-sided overlapping (OL)
oL N oL
50,1 | a o |20 50| a » a o <50
3 J— = FE o #F ..
|
- L — 5 L2 |
LI | I L 1 .
~v DIN 18807 (DIN) overlapping ~v Continuous profiles with reinforcement (CR )

Source: GRISPE WP2




@ Profiles covered by the GRISPE * project

~t Perforated profiles

N

Triangular pattern (covered by the Square pattern (not covered by the EN
EN 1993-1-3) 1993-1-3)

Source: GRISPE WP3




Profiles covered by the GRISPE * project

~v Holed profiles

Top view on upper flange

B
il

AT

(a) Circular holes

-
(b) Square holes

Source: GRISPE WP3

Section A-A

dal e




@ Profiles covered by the GRISPE * project

~v Plank profiles
by
I "]

‘il_ £ Clip joint 2

LL)I EL—J

Specific failure in the
assembling :
dislocation Chevron-shaped joint

Profiles requested by architects that want to have facades without visible fasteners

Source: GRISPE WP4




Methods to design a
cold formed element




@ The logigram to study cold formed profiles

o _ Strength capacity of a Cold
FEM designing formed profile

To interpolate between test ‘

results and check

calculation methods at the

limit of the field of Design by calculation < > Design by testing

application

Definition of the test
Checking the application program
criteria of the formula

|
l . Test report
|

; ¥

y

yes .No : Test interpretation
/NO .
Background ‘
document
i Yes |
— : Design formula
Application of the (Strength of materials test
formula | calibration factor)

Geometry of the profile, n
end support tests, n bending
tests, n interaction M/R
tests + n coupon tests

| fys fur topsr CUTVE
load/ displacement

I /type of collapse

Statistical approach: Mgy,
| Vigs Ryrg Proposal,
Interaction curve M/R.

I
|
I» Excel software




Tests to study the
cold formed sheetings




@ The different tests to study the cold formed profiles:

VACUUM CHAMBER:

A .
v The vacuum chamber test: <k Test set-up:

Source: GRISPE WP4 Source: GRISPE WP4

The objectives of this test :
—> Effective inertia of the profile : |
— Bending capacity : M. g4




@ Vacuum chamber test results

Typical associated collapses: local buckling/dislocation

~t Curve load displacement <t Typical failure: dislocation

Source: GRISPE validation Source: GRISPE validation
deliverable D 4.7 deliverable D 4.7




(S) Anexample of test interpretation

“( Main collapses:

* Downward load (pressure): buckling of the compressed facing.
» Upward load (suction): dislocation of the profile assembling.




@ The different tests to study the cold formed profiles:

SINGLE SPAN BENDING TEST

“( The objectives of this test:

—> Effective inertia of the profile : |«
— Bending capacity : M, g4




@ Typical single span bending test set up

hinge l

¥ x
£\ \
= timber block _@" transversal

width = 100 mm heam

Source: GRISPE WP2




@ Typical single span bending test set up

Source: GRISPE WP1 Source: GRISPE validation deliverable D 1.8




@ Test results (case bending in single span tests)

~t Ex: Decking profile without embossments
ULS Load -
N I Typical curve

load
displacement

»
»

Displacement

Source: GRISPE validation deliverable D 1.8

Source: GRISPE validation deliverable D 1.8




@ An example of test interpretation

“( The WP1 example (embossment effects)

Bending Inertia
resistance Moment

NN\

3.5%-10% | 1.5%-11%

Source: GRISPE WP1




@ The different tests to study the cold formed profiles:

INTERMEDIATE SUPPORT TEST

“( The objectives of this test:

—Interaction between the bending Moment M, z4and R, 4
—Reaction on the support R, g4




@ Typical intermediate support test set up

To calculate the

rotation on the To simulate the

central support Eg. Total perforation trapezoidal profile

support - ,

/ by / e

timber block F1g, F2g l E1d. E2d , |

/ A4 N\ ol
/ \ s gt

T 7 ¥ FE 2%

v I 37,
i F1c, F2¢ B
f 100 /sz %} /G 100
transverse
/ tie Testspan s

Aso (b,F=60) / U160 (b,=160)
A corner to simulate
the profile lateral
continuity

.....

Source: GRISPE WP3 Source: GRISPE WP3




@ Test results (intermediate support case)

Eg. Total perforation decking profile

Load,

»

displacement

Source: GRISPE validation deliverable D 3.7 Source: GRISPE WP3




@ An example of test interpretation

“( The WP3 example (square pattern perforation effect)

\ Moment — Reaction Interaction

Flange perforation 0% - 5%
Web perforation 11% - 19%
Total perforation 35%-42 %

Source: GRISPE WP3




@ The different tests to study the cold formed profiles:

END SUPPORT TEST

“( The objectives of this test:

— Capacity of the end support reaction R, 4




@ Typical end support test set up

Modified set up to
ensure the accurate
position of the load

1

> 3w 3>

- L #

test span s

= Block of wood to

avoid any web

crippling in this
Source: EN 1993-1-3 Source: GRISPE WP2 specific part

~ sample length L




@ Typical end support test set up

Source: GRISPE validation deliverable D 1.8 Source: GRISPE validation deliverable D 1.8




Load 1

Not used in the
design, because itis a
bending collapse

/ ‘ N < "“’ l|.”'Ar A\ ¥ |
Pick 3 i\ 2/ : _ - /ﬁt .ii-
py L NI LT

y e “ '

oy =

— Wi "L“_ e

- “w

v

Displacement

Source: GRISPE validation deliverable D 1.8 Source: GRISPE validation deliverable D 1.8




@ An example of test interpretation

“( The WP1 example (embossment effects)

End support reaction

Source: GRISPE WP1




&

Collapses and instabilities of
cold formed elements




@ Different instabilities under compression stresses

"( Local buckling

Eg : Plank profile

Eg : Corrugated sheet local buckling

local buckling

Source: GRISPE WP2 Source: GRISPE WP4




@ Different instabilities under compression stresses

"( Local buckling

Eg : cassette/ liner tray
lateral buckling

Source: GRISPE WP2 Source: GRISPE WP2




@ Different instabilities under compression stresses

v'( Local buckling and local impression at an intermediate support

Eg : Continuous trapezoidal profile

Local impression of the web top +
web crippling area

Source: GRISPE WP2 Source: GRISPE WP2




@ Collapse at an intermediate support

~v Local buckling and impression of the support

Eg : Corrugated sheet Web crippling in

the compression area

Source: GRISPE WP2 Source: GRISPE WP2




@ Collapse by plastification

~v Yielding
Eg : Corrugated sheet

Profile yielding

Source: GRISPE WP2




@ Different instabilities under shear stresses

"( Shear collapse

Eg : Corrugated sheet Web crippling in
the shear area

Source: GRISPE WP2 Source: GRISPE WP2




@ Different instabilities under shear stresses

‘i' Local web crushing/ web crippling
Eg : assembling continuity on a support => DIN overlapping

Web crippling at the
overlapping area

Source: GRISPE WP2 Source: GRISPE WP2 Source: GRISPE WP2




@ Collapse at end support

‘} Web crippling

Eg : Corrugated sheet Web crippling in

the compression area

' v
| i
P

- .

‘f"ﬂw

Source: GRISPE WP2 Source: GRISPE WP2




@ Collapse at end support

"( Web crippling

Eg : Plank profiles

Chevron shaped joint (plank 300 reinforced)

Web plank crippling

{3

SR

Source: GRISPE WP2




@ Collapse under upward load

~t Fasteners in the valley

Eg : Corrugated sheets

Fasteners in the valley Fasteners in the valley

Source: GRISPE WP2 Source: GRISPE WP2

Local buckling




@ Collapse under upward load

v'( Fasteners in the crest

Eg : Corrugated sheets

Source: GRISPE WP2

Local buckling at the fastening point




@ Collapse under upward load

Eg : Liner trays

Free flange

buckling N 4

v‘/‘
f

Source: GRISPE WP2




@ Liner tray and plank profile specific collapses

~v Assembling dislocation

Eg : Plank profiles

Source: GRISPE WP2 Source: GRISPE WP4

~t Liner tray free flange lateral instability




&

Mechanical model to take
the local flange instability
into account




@ Notations used

(a) midpoint of corner or bend

X is intersection of midlines
P is midpoint of corner

. . ol
Iy =r+t/2

o | ) 0 (2]
g, :m“ tan( = e \m(?i /

(¢) notional flat width by, for a web

(bp = slant height sy)

(d) notional flat width by, of plane

parts adjacent to web stiffener

(b) notional flat width by, of plane

arts of flanges . .
p : () notional flat width by, of flat parts

Source: EN 1993-1-3 adjacent to flange stiffener

Source: EN 1993-1-3




@ Required conditions to use the EN 1993-1-3

Element of the cross section

Maximum value

V
]
_>|n
9‘&

fe—"—>] fe—"—>]
e l bIt<50
pa—a <y

bl t<60
¢/ t<50

;«AE l E

b/t<90
c/t<60
d/t<50

r

2N

b/ t<500

AL A

457 £ ¢ <90°

h/t<500 sin ¢

Source: table 5.1 of the EN 1993-1-3

For sheeting and members 0,45 mm < t.,, < 15mm
For connections 0,45 mm < t o < 4mm
0,2<c¢c/b<0,6

0,1<d/b <03

Ifr/t<b (clause 5.1 1993 1.3)
andr<0.10 b,

Then it is possible to ignore the profile’s corners.




@ Plate buckling critical stress determination

Et3 a ;
. 2/ 4 vy
12(1 — v2)
X

N According to the plate theory, the deflection Wix.y) ‘N
A | ’ XX
( follows the fourth order differential equation :
0 Wey) 0 Wy O Way)  1( 0*Wery)
dx* 0x20y?2 oy D\'™* o0x?

The corresponding solution is as follows:

Wixy) = AppSin (m;rx) sin (%)

a and b dimensions in plane of the plate
mn:1,2,3..




@ Plate buckling critical stress determination

v'( If we put the expression of w, , in the fourth order differential equation
the result is:

)+ )

"( In addition we have this equation of the normal effort N.:

22:%(@)2

D a

2 212

2
Nxx — nll)zc;.z [(n;n) + (ann)

“( N, must be at its minimum value (use the derivative/m): n=1

= Oyl

ON oN b b
cr=w§(ma+i)(__ a):o - =

a
om  om mb/\a m?b b




@ Plate buckling critical stress determination

“( After simplification (replace m by a/b), we obtain the following equation :

D12 T2Et3

N.. =4 =4
r b? 12(1 — v?)b?

"( In addition we also have :

For uniform compression stresses on the plate

/22 <

N, Dm? f m?Et3 4 ) (t) _ ) (t)
21 — )%t 12(1 = vA)b% \b Oer = e 0@ =9 \b

2

Buckling critical stress




@ Effective width notion - Determination of p

b,
P=J Oy tdy
a

=0y::b

m*~p

y,v
% /:J Source: EMB

"( Effective section

(Winter)

Source: EMB

Flange in compression

A . . L
¥ Top flange in compression - stress distribution —
N { —

VUL dddd

e

berr _ besy
2 el 2

= be;

b
ff
Oaverage X b=2 <amax eT) = fy X beff

Fictive hole in the compressed flange

bers = pb

Effective Section AA




@ Plate buckling critical stress determination

"( From the following equation we are looking for b :

?E t\
Ocr(beff) = fy = kg 12(1 — v2) beff

“( A proportionality exists between the critical stress and the (t/b_)? ratio :

2
t
Tertbers) = Jy = K <beff>




@ How to determine b ?

“( By dividing the critical stress by f, we obtain :
Ocr(b) K m°E (t)z 1
fy, 7121 -v®)\b/ \j,
“( By calculating the square root the above equation becomes :
Ocr(b) _ I’ T%E (t)z i 1/2
f,  \°120-v3)\b/) \j,
~¥ By multiplying by b the result is:

Ocr(b) _ ) t\2/1 1/2
b f, b<k“ 12(1 — v2) (E) <E>>




@ How to determine b

~v The ratio between the critical stresses calculated for berand b is:

2
[ t J

Ocr(beff) b _

= 2

Ot (b) (tJ
b

<t With Ocrbefy = Ty @Nd some mathematics, we obtain:

2 2
b b,
Gcr(beff)_gcr(b)[g} » Gcr(b):(ycr(beff){b_ﬁ} » Oer(o) = [ ] » D _b[

o 2B () 1
b. =b cr(b) 1/2:b k T (_j L] e
T B S T e Y AR

"( The reverse equation gives:

et el ) )

bﬁ b acr(b) k_72E | t

€

~¢ By multiplying by b we obtain the ratio b/b; :

o[ 2N ) b

o Oer(b) E \t

b _; f, ]1,2:b_[ 12(1_2V2)f ”
D Ocr(b) L k,7z°E "’

cr(b) 1/2




@ How to determine the critical slenderness

“( From the ratio b/b_,, we are looking for b, :

2
berr = b =b |k —
ers f, \/“12(1—1;2) berr) \fy

2

L _ n°E t
With : o = aW(E)

“(We obtain the Eurocode formula of the critical slenderness :

fy

b 2 f
=2 [o=—l 12 - )fy I =1.051868492(9] /
D¢ o t - kz°E t J\ Ek

o

With E =210 000 MPa and v = 0.3




@ Critical slenderness

We define:

235
=
| T,
235
fy><82=235 » fyZ?

We introduce this result in the slenderness ratio calculated at the previous step :

- f b Y f
PRL I N L M £, =1.051868492(9j y
beff Gcr(b) t kaﬂ- E ’ t Eko-
We obtain :
- b
Ap =— =1.051868492 (9) 235
beff t EZEkU
ip = L =1.051868492 (Ejlxo_033452169\/1
off t)e K,
With E =210 000, MPa and v = 0.3
! (bj The final Eurocode
- t

Ap = formula of the critical

Oy 28-41935846«9\/E slenderness




@ How to determine the reduction factor (p ) ?

“( According to Von Karman (1910),
The reduction factor p may be taken as follows :

Wheni, <1:p=1
P

.gall -

When /Tp >1:

w==p | bers = pb

~t According to Winter (1947),
The reduction factor p may be taken as follows :

b o 0,22\ 1
eff _ L(b):<1_ ) <1

b~ f o ) 2y




@ Effective area of the section in compression

"( Finally after several testing calibrations we obtain,
at the end, the following formula :

(6..) ( b )2 ‘ b Ocr
o) =0 E— = = —_
crleff cr beff y beff p fy

where p is the reduction factor for plate buckling




@ The effective width for internal compression elements

"(At the end, the following table has to be applied
in compliance with the EN 1993-1-5

Wrinkler formula if y =1

Internal compression elements A, —0,055(3 + l/))
Stress distribution (compression positive) Effective width beff p = P =2 S
o [T~ =L A

oy - e

be-| = 0,5 beff beZ - 0,5 beff

o [T o, e 1 = fy b/t
=

beff:pt_’

be‘l be2 5) _
<L} - 0}
J b p: ber= 5 et be=best~bey cr 28,4¢ ka
b b
—Cd%r P<0:
0 —
1 M . beg=pb.=pb/(1-y) y is the stress ratio determined in accordance with 4.4(3) and 4.4(4)
bej ben 12 b is the appropriate width as follows (for definitions, see Table 5.2 of
= bey =04 begt bey = 0,6 bt EN 1993-1-1)
b,, for webs;
P = 02/07 ALl 1>e>o 0 0>P>-1 -1 1>P>-3 w = '
- b for internal flange elements (except RHS);
= 2 “0)2
Buckling factor kg { 4,0 82/(1,05+) 7,81 7,81-6,29¢ + 9,78y 23,9 598 (1-y) b - 3 t for flanges of RHS;

c for outstand flanges;
h for equal-leg angles;
h for unequal-leg angles;
k. is the buckling factor corresponding to the stress ratio y and
. . . boundary conditions. For long plates ki is
Uniform compression of the considered flange given in Table 4.1 or Table 4.2 as appropriate;

tis the thickness;
Source: EN 1993-1-5 o, is the elastic critical plate buckling stress see Annex A.1(2).




@ Procedure to calculate b (Internal compression elements)
>

bp =b— ZgT Ir = Tm (tan (%) — sin (%)) /KO’S besr O,SK
t

beff
E b 235
— Pp €= a
\/ y

— 02 1

V= o Acrr = berst A =b t
Buckling 4,0

coefficientks

A

- | b/t Acerr = PAc
P Joar 284k,

\ 4

p=1 for 2,<0,5+.0,085—0,055)

A, —0,055(3 + ¥)
2

<1 for A,>0,5+,/0,085—0,055y




The effective width for outstand compression elements

Oustand compression elements

IA

Stress distribution (compression positive) Effective width bes p =

2
,Hb“f 1> 0: /’lp

[0}
o, W 1 ber=pc
L <
b, b
. 4" - P<O0: f B / t
o —_
! ber=pbe=pc/(1-9) 1. = Y _
oI b p
eff
— Ocr 28,4¢./k o
Y =0/01 1 0 -1 1> = -3
Buckling factor ky 0,43 0,57 0,85 0,57-0,21  + 0,07¢?
beff , . U is the stress ratio determined in accordance with 4.4(3) and 4.4(4)
o, .-”.H'”W\’ 1—>l£2—0 : . b is the appropriate width as follows (for definitions, see Table 5.2 of EN 1993-1-1)
= 0 befr=p C . b,, for webs;
b )
. b for internal flange elements (except RHS);

Peff |,
C P<0: . b - 3 t for flanges of RHS;

o
! mﬂm\ beff =p be= pc /(1 -lj)) . c for outstand flanges;

O
b, ;QLU;M 2 . h for equal-leg angles;
A
Y = 02/01 1 1>9>0 0 0>y >-1 -1 . h for unequal-leg angles;
Buckling factor kg 0,43 0,578/ (w +0,34) 1,70 1,7-5¢ + 17,192 23,8 . k. is the buckling factor corresponding to the stress ratio ¢ and boundary conditions.

For long plates k; is
. given in Table 4.1 or Table 4.2 as appropriate;
. t is the thickness;

. o, is the elastic critical plate buckling stress see Annex A.1(2).

Source: EN 1993-1-5




@ Procedure to calculate b (outstand compression elements)

bp =b—2g9, Jr = T (tan (%) — sin (%))

pc

E b 235 t
— Pp '5=/f_
y

A
o
—v

G
w="/4 1 Aeffzbefft A.=b t
Buckling
coefficientks 0.43
i f, _ b/t Acefr = PAc I*
P Joar 284k,
p=10 if A, <0748

o018 90 if %, > 0,748




@ Plane elements with intermediate stiffeners

"( The following method is used:

Source: EN 1993-1-3 Source: EN 1993-1-3




&

Mechanical model to take
the local web instability
into account




@ Effective cross-sections of webs of trapezoidal profiled sheets

"( The Eurocode provides the following method according
to the number of stiffeners along the web:

Source: EN 1993-1-3




@ Web effective width

"( In the case of a web without any stiffener:

e, is the distance from the effective
centroidal axis to the system line of the
compression flange

Seff,0 = 0,76 t \/E/(VMOUcom,Ed

Seff1 = Seffo

Seffn =1.5 SeffO

Source: EN 1993-1-3




@ Analysis of the web effective width

<t Method:

1. Determine the position of e, with the effective
flange in which the web is supposed to be fully
effective

2. Compare e, /sin$ with seff,+seff,

3. Determine whether the web is effective or not :
If e, /sin > seff,+ seff, Then the web is not
fully effective
If e, /sing < seff,+ seff, Then the web is fully
effective

4. If the web is not fully effective, a part of it has to
be removed according to the following formulas :

(e, /sing - ( seff,+ seff,)) x t of the web
(cross section)
(
(

Serry T (€. /Sing - ( seff+ seff,))/2)*sind
distance from the flange in compression)




&

Formula to determine the
span bending resistance of
the sheeting profile




@ Determination of the effective section modulus W

| (mm) width y (mm)/ topflange | Ixy (mm?) X y? (mmy,) h (mm) vertically | 1h/12

Sem sup eff plate Dest 0 0 0 0 0

Radius top rmd)(rad) r, (1-sind/d) | ... | 0 0

Web totally effective Sw h,/2 | S,Xsing |

Radius inf rmd)(rad) h,r, (1-sind/d) | | 0 0

Flange in tension b,/2-g,-f h, | 0 0

S N R U A 11

X, Ly, .LY 11 rR11 | |

Position of ec frox thetop flage

ely=Z(Ixy) /X2l

................. mm

Along the web (sc=s,) = (e./sin(@)-g, H—teeenn.

mm




@ Determination of the effective section modulus W

Correction if the web is not fully effective :

| (mm) width y (mm) I x y (mm?) | x y2 (mm?3) h (mm) 1h%/12

sect 1/2 gross L11 LY11 R11 111

delta 'A “Ya e, L 'A Sind)

v
z L22 122
A=(e/sing-g,)-2.5S,
Ya=(A/2+ 5.4, +8)xsind
Position of e, from the top flange
Yer =Z1Y/Zy Yerr mm3
Effective Inertia / t ly2 +Ih?/12-Sd? Ixxeffit i Ieff/t mm3 2 X |eﬁ /t mm?

Ixxeff /'wave 2 X Ieff]'[ X t mm?




@ Determination of the effective section modulus W

L Legfriv
eff — br

With b, the pitch of the profile :

lesr  legy )
11,%4 = Min ;
err (zc (hyw — 2¢)




@ Bending capacity

"( The bending resistance determined as follows:

M¢ra = Weff-fyb/VMo

——

Effective section modulus

Source: EN 1993-1-3

legr  legy )
W... = Min ;
err ( Zc (hw - Zc)




Formula to determine the
end support reaction
and intermediate
support reaction




@ Eurocode application conditions

‘ir The clear distance ¢ from the beating length for the support reaction or
local load to a free end, see figure 6.9 (EN 1993-1-3), is at least 40 mm;
the cross-section satisfies the following criteria:

e 7/t <10...(6.17 a)
* h,/t <200sing... (6.17b)
* 45° < ¢ <90°...(6.17¢)

“( Where:

* h, is the web height between the midlines of the flanges;
* risthe internal radius of the corners;
* ¢ is the angle of the web relative to the flanges [degrees].




@ Reaction capacity

. : o\
"( The local transverse resistance is: \ T/ |
Rw,Rd Rw Ra Rw,Rd Rw,Rd Rw Rd Rw.Ra
Rupa = at® |fypE <1 — 0,1\/9 [0,5 +4/0,02 la/t] 24+ (¢/90)2) /v ‘
Rw, HGT ? Rw,Rd Aw, Rd Rw,Rd ?Hw,ﬂd F*w.lrwA

Source: EN 1993-1-3

* The following formula issued of tests apply :(5) The
value of the coefficient a should be obtained from the
following:

I, is the effective bearing length for the relevant category, see (3);
a is the coefficient for the relevant category, see

(3) The values of I, and & should be obtained from (4) and (5) respectively. The maximum value for I, = 200

. for Cat 1:
mm. When the support is a cold-formed section with one web or round tube, for Ss should be taken a value of 3) for Category

10 mm. The relevant category (I or 2) should be based on the clear distance e between the local load and the - for sheeting profiles: a = 0,075 ... (6.20a)
nearest support, or the clear distance ¢ from the support reaction or local load to a free end, see figure 6.9.
(4) The value of the effective bearing length la should be obtained from the following: - for liner trays and hat sections: a=0,057 ... (6.20b)
a) For category 1: *  b)for Category 2:
l, = 10mm (6.19a)
b) For category 2 - for sheeting profiles: a = 0,15 ... (6.20c)
Py <0,2 lo =S5 (6.19b)

- for liner trays and hat sections: @ = 0,115 ... (6.20d
By, =03 l, =10mm (6.19c¢)

0,2 < B, < 0,3 Interpolate linearly the value of la for 0,2 and
0,3




@ Definition of the categories 1 and 2

Source: EN 1993-1-3




Formula to determine the
Interaction between
support bending and

support reaction




@ Combined bending moment and local load or support reaction

"( The following formula applies:

MA
M
MEd <1
c,Rd
Frq <1 Acceptable
Ry, ra area ‘
M F .
By Ed <125

M.ra Ry ra Interaction diagram




&

Formula to determine the
shear resistance
of a sheeting




@ The design shear resistance

"( It should be determined from:

h
w
- tfb S
v —
v o Sing 7% A, = 0.346-% Iy
b,Rd = t | E
Ym
where:
foy is the shear strength considering buckling according to Table 6.1,
h,, is the web height between the midlines of the flanges, see figure 5.1 (c);
¢ is the slope of the web relative to the flanges, see figure 6.5
Relative web slenderness Web without stiffening at the Web with stiffening
support at the support (1)
Ay < 0,83 0,58f, 0,581
0,83 < 1, < 1,40 0,481,/ A 0,481,/ A
Aw = 1,40 0,67 fyp/Aw? 0,48f,1,/ Aw
(1) stiffening at the support, such as cleats, arranged to prevent distortion of the
web and designed to resist the support reaction

Source: EN 1993-1-3




Designing a liner tray




Conditions required by the EN 1993-1-3 to design a liner
tray

0,75mm < fom <1,5mm

30 mm < by <60 mm

60 mm < h <200 mm

300 mm < b, <600 mm
I/b, <10 mm%mm

Sq <1 000 mm

e

Source: EN 1993-1-3




@ Wide flange in compression

I Mc¢ ra = 0,8Wersmin X fyn/Vmo I

Weff,min = y,eff/Zc

But :

Weff,min < Iy,eff/Zt

Source: EN 1993-1-3




@ Wide flange in tension

53.3.10%%§t3¢,,
Puetf = b3

b, e the overall width of the wide flange;

e, the distance from the centroidal axis of the gross cross-section to the centroidal axis of
the narrow flanges;

h the overall depth of the liner tray;

L the span of the liner tray;

t., the equivalent thickness of the wide flange, given by:

I, the second moment of area of the wide flange, about its own centroid, see figure 10.9

My ra = 0,8BsWers com X fyn/Vmo

But :
Mpra < 0,8BpWesre X fyp/Ymo (10.21)
R eff.t % Jyb/Ymo Source: EN 1993-1-3
with:
Weff,min = Iy,eff/Zc
Limitation w,,; < 1o /2
If s, < 300mm l

Bb = 1'0
If 300mm < s <@
By = 1,155,/2000

S, is the longitudinal spacing of fasteners supplying lateral restraint to the narrow
flanges, see figure 10.9




Designing a
perforated sheet




@ Perforation with a triangular pattern

"( The principle is to use a reduced thickness on the perforated area

(I) Perforated sheeting with the holes arranged in the shape of equilateral friangles may be
designed by calculation, provided that the rules for non-perforated sheeting are modified by
introducing the effective thicknesses given below.

NOTE: These calculation rules tend to rather conservative values. More economical solutions
might he obtained from design assisted by testing, see Section 9.

(2) Provided that 0,2 < d/ a < 0,9 gross section properties may be calculated but replacing t
by t, .+ Obtained from:

taery =118t (1-09%)  (10.25)

where:
d is the diameter of the perforations;
a is the spacing between the centres of the perforations.




@ Perforation with a triangular pattern

(3) Provided that 0,2 <d / a < 0,9 effective section properties may be calculated
using Section 5, but replacing t by t, . obtained from:

tpers = t3/1,18(1 — d/a)... (10.26)

The resistance of a single web to local transverse forces may be calculated
using 6.1.7], but replacing t by obtained from:

N2 3/2
teepr =t [1 - (%) sper/sW] .. (10.27)

where:
Sper 1S the slant height of the perforated portion of the web;
S,, is the total slant height of the web.




Deflection




@ How to take deflection into account:

h In all the cases, the maximum deflection of the profile
“{ calculated with the effective inertia must stay below the
maximum accepted deflection as defined by the Eurocode.

“ It is possible to make calculations with several sections
( characterized by different effective inertia.




Other cases not covered by
the Eurocode EN 1993-1-3




@ Topics not covered by the current version of the eurocode 1993-1-3

~ Decking embossment

"(Outward stiffeners

<vCurved profiles with and without arch effect

~rAssembled profiles on support

~yCorrugated profiles

“tLiner trays with s,>1m

~tPerforated profiles with a square patent perforation

"(Flange holed profiles

~vPlank profiles

Covered by the

GRISPE

PROJECT

Steel decks with
embossments or
stiffners

Curved profiles

Liner trays

Va A

Assembled
profiles

Corrugated
sheetinas

ARRRN

Perforated or
holed profiles 5

m

Cladding systems

Source: All WP GRISPE
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