
Guidelines and Recommendations for Integrating Specific Profiled steel sheets in the Eurocodes

STANDARDISATION BRIEF No 4

Liner trays

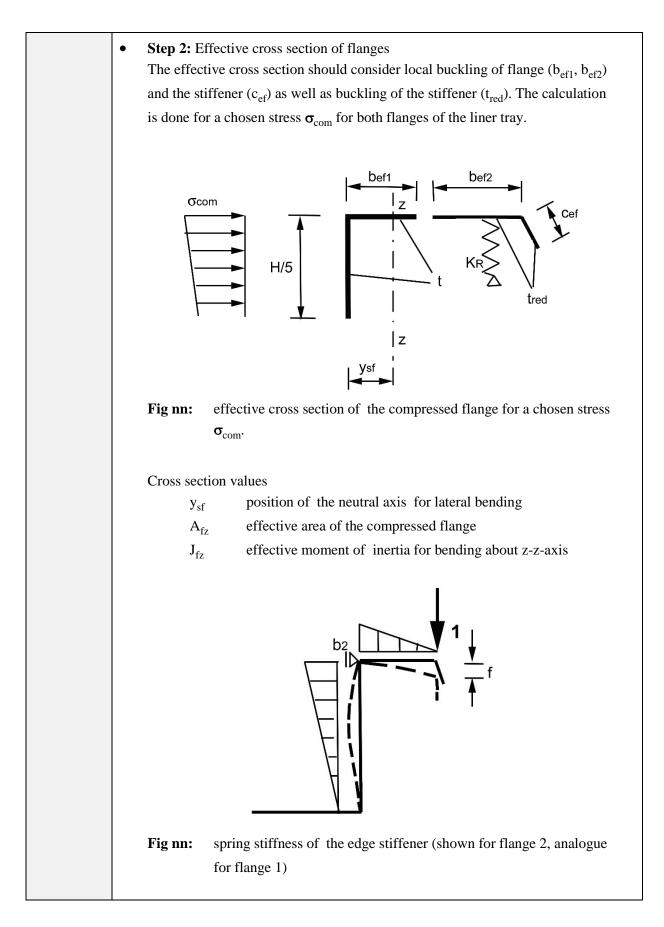
Due date: 30 June 2016 Completion date: 30 June 2016

Deliverable D 5.2 (4)

Guidelines and Recommandations for Integrating Specific Profiled Steels sheets in the Eurocodes (GRISPE)

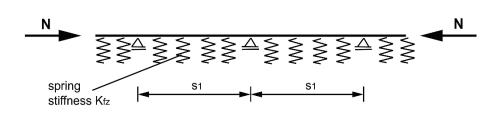
Project co-funded under the Research Fund for Coal and Steel Grant agreement No RFCS-CT-2013-00018 Proposal No RFS-PR-12027

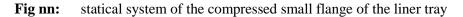
	Author(s)					
R. Ho	olz, IFL					
	,					
		Drafting history				
Final	30 June 2016					
		Dissemination Level				
PU	Public					
PP		on Services, the Coal and Steel Technical Committee for Standardisation (CEN)				
RE	Restricted to a group specif		X			
СО	Confidential, only for Benefi	iciaries (including the Commission services)				
		Verification and Approval				
Coordinator		X				
	nical Coordinator	X				
	eader For WP5	X				
Othe	r Beneficiaries					
		Deliverable				
D 5.2 (4) Strategic Brief No4		<i>Due date: Completion date:</i>	30/06/2016 30/06/2016			

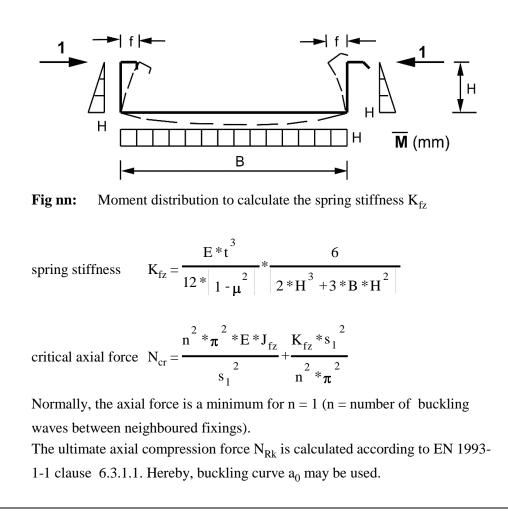

Guidelines and Recommendations for Integrating Specific Profiled steel sheets in the Eurocodes

ANNEXE 3

3.2 Proposed Amendments


AM-1-3- 2016-04			
Subject	Influence of the fixing distance s_1 on the bending moment capacity of liner trays. Improvement of the coefficient β_b and extension of the application range		
Clause No/ Subclause No/ Annex	10.2.2.3		
Reason for Amendmen t	The actual design rule to take into account the effect of the fixing distance s_1 is rather conservative, and furthermore limited to a maximum fixing distance $s_1 = 1000$ mm. Both aspects will be improved.		
Proposed Change	The ultimate positive bending moment of the liner trays (wide flange in tension) is generally limited by the ultimate compression forces of the small flanges. The compressed flanges are stabilized against lateral buckling by the connections between liner tray and outer cladding; the fixing distance s_1 determines the buckling		
	length of the compressed flange and therefore the ultimate compression forces of the small flanges and in consequence also the ultimate bending moment. The ultimate bending moment is approximately proportional to the compression resistance of the small flanges.		
	The reduction coefficient β_b to respect the fixing distance s_1 corresponds approximately to the reduction of the compression resistance of the small flanges.		
	Ultiamte bending moment $M_{c, Rk, 2} = M_{c, Rk, 1} * \frac{N_{R,k, 2}}{N_{R,k, 1}} = M_{c, Rk, 1} * \beta_b$ with:		
	$M_{c,Rk,1}$ (already known) ultimate positive bending moment of the liner trays for a fixing distance $s_{1,1}$		
	Design by calculation: The bending moment $M_{c,Rk,1}$ is the calculated ultimate bending moment for the fixing distance $s_{1,1} = 300$ mm according to Clause $10.2.2.2$ ($\beta_b = 1,0$)		
	Design by testing: The bending moment $M_{c,Rk,1}$, which is determined by testing, is related to the distance $s_{1,1}$, which was chosen for the tests.		


	This fixing distance $s_{1,1}$ is mentioned in the
	technical documents of the liner tray (often:
	$s_1 = 621 \text{ mm} = 3 \text{ ribs of the cladding profile}$
	35/307)
M _{c,Rk,2}	(unknown) ultimate positive bending moment of the liner trays for a
c,RK,2	(unline with) distance $s_{1,2}$
	The bending moment $M_{c,Rk,2}$ is the recalculated ultimate bending
	moment for the interesting fixing distance $s_{1,2}$. The interesting fixing
	distance $s_{1,2}$ corresponds to the foreseen fixing distance in a specific
	application.
	The fixing distance $s_{1,2}$ should not exceed max $s_1 = 2000$ mm
_	N _{R,k,2}
$\boldsymbol{\beta}_{\mathrm{b}}$	$= \frac{N_{R,k,2}}{N_{R,k,1}}$ reduction coefficient for fixing distances $s_1 \ge s_{1,1}$
N _{R,k,1}	characteristic compression force of the small flanges of the liner trays,
11,11,1	calculated with the buckling length $l = s_{1,1}$
N _{R,k,2}	characteristic compression force of the small flanges of the liner trays,
,,,	calculated with the buckling length $l = s_{1,2}$
• Step The the e for th of bo	1: Gross cross section of flanges gross cross section of the compressed flange consists of the small flange, edge stiffener and 1/5 of the web. Separate calculations should be executed the small flanges on both sides of the liner tray, because the cross sections oth flanges are different. $\frac{b_1}{b_2} + \frac{b_2}{b_1} + \frac{c_2}{b_1} + $
•	
	B
Figı	nn: Liner tray, definition of the gross cross sections of the compressed flanges


spring stiffness
$$K_{R} = \frac{E * t^{3}}{12 * |1 - \mu^{2}|} * \frac{3}{b_{2} * |b_{2}^{2} + b_{2} * H|}$$

• **Step 3:** Ultimate compression force of the small flange with respect to lateral buckling

When considering lateral buckling of the compressed flange, the elastic foundation of the compressed flange in the lateral direction may be taken into account:

	ultimate axial force $N_{Rk} = \mathbf{X}(\mathbf{a}_0) * N_{pl}$		
	$= \mathbf{X}(\mathbf{a}_0) * \mathbf{A}_{fz} * \mathbf{f}_{yb}$		
	ultimate compressive stress $\sigma_k = X(a_0) * f_{yb}$		
	If σ_k is different from the initially chosen stress σ_{com} , the calculation should be		
	repeated from step 2 using $\sigma_{com} = .\sigma_k$ until the stress σ_{com} , which is the basis		
	for the effective cross section, and the buckling stress of the compressed flange σ_k have converged.		
	Analogue calculations should be executed for both flanges of the liner tray.		
	• Step 4: Reduction coefficient β_b		
	The calculation according step 2 and step 3 is done for both flanges and for		
	both fixing distances $s_{1,1}$ and $s_{1,2}$. The reduction coefficient for the fixing		
	distance $s_{1,2}$ is		
	β_{b} (distance $s_{1,2}$)		
	$= [N_{Rk} (fl 1, s_{1,2}) + N_{Rk} (fl 2, s_{1,2})] / [N_{Rk} (fl 1, s_{1,1}) + N_{Rk} (fl 2, s_{1,1})]$		
Background	[1] D2.5 Background and draft annexes for EN 1993-1-3 for liner trays, 31.10.2015,		
Information	KIT		