

Test report of steel trapezoidal sheeting with and without embossments and outward stiffeners

Working Package 1

Deliverable D 1.3 (Rev02. 11. June 2015)

Guidelines and Recommendations for Integrating Specific Profiled Steels sheets in the Eurocodes (GRISPE)

Project co-funded under the Research Fund for Coal and Steel Grant agreement No RFCS-CT-2013-00018 Proposal No RFS-PR-12027

Author(s)

C. Fauth, KIT

Drafting historyFinal Version31th October 2014Rev01.26th January 2015Rev0211th June 2015

	Dissemination Level	
PU	Public	
PP	Restricted to the Commission Services, the Coal and Steel Technical Groups and the European Committee for Standardisation (CEN)	
RE	Restricted to a group specified by the Beneficiaries	
СО	Confidential, only for Beneficiaries (including the Commission services)	X
	Verification and Approval	
Coord	dinator: 🗴	
WP2	Leader: x	
Other	r Beneficiaries	
	Deliverable	

Content

1	Preliminary remarks								
2	Object of testing								
3	Se	cope of t	esting	5					
4	Т	est perfo	rmance and results	5					
	4.1	Gener	ral remarks	5					
	4.2	Single	e span tests	7					
	4.3	Intern	al support tests	9					
	4.4	End s	upport tests	3					
	4.5	Meas	urement of the profile geometry1	5					
	4.6	Coup	on tests with and without embossments1	5					
5	S	ummary		9					
A	nnex	: A:	Object of testing (page 18)						
A	Annex B: Single span tests (page 19 to 39)								
A	Annex C: Intermediate support tests (page 40 to 90)								
A	Annex D: End support tests (page 91 to 111)								
A	Annex E: Load-deflection curves for PF-2-100-2 & IS16-2e-075-12 (page 112 to 114)								

- Annex F: Measurement of the profile geometry (page 115 to 117)
- Annex G: Coupon tests with embossments (page 118 to 137)

1 Preliminary remarks

"Versuchsanstalt für Stahl, Holz und Steine" of the Karlsruhe Institute of Technology (KIT) investigated the load-bearing capacity of steel trapezoidal sheeting with and without embossments and outward stiffeners for the research project "Guidelines and Recommendations for Integrating Specific Profiled Steels sheets in the Eurocodes (GRISPE)" co-funded under the Research Fund for Coal and Steel. The trapezoidal steel sheeting profiles were produced by Bacacier (PCB 60 and PCB 80) and Tata Steel (ComFlor 80). The test program is specified in the deliverable D1.2 "Test program definition".

2 Object of testing

The tested trapezoidal sheeting profiles from Bacacier and Tata Steel consist of steel sheeting according to EN 10346:2009, which are formed to profiles with the following section heights and overall widths by roll-forming:

Type of profile	Steel grade according to EN 10143:2006	height [mm]	width [mm]	thickness [mm]
PCB 60	S320GD	60	828	0.75 and 1.00
PCB 80	S320GD	77	750	0.75 and 1.00
ComFlor 80	S450GD	95	600	0.90 and 1.20

Table 1: Section heights and overall widths of the different tested profiles

The nominal cross-section geometry of the tested profiles is given in annex A.1 to A.3. Fifty percent of the profile types PCB 60 and PCB 80 had web embossments. The geometry of the profiles and embossments is given in the following table 2 and figure 1 and figure 2. The other part of the profiles PCB 60 and PCB 80 had no web embossments.

 Table 2: Cross-section with embossments

Figure 1: PCB 80 (incl. embossments)

Figure 2: PCB 60 (incl. embossments)

The profile ComFlor 80 (Tata Steel) has outward stiffeners which are given in the following figure 3.

Figure 3: Outward stiffeners (ComFlor 80)

3 Scope of testing

The test performances for determination of the resistance values for bending, shear and web crippling were done according to EN 1993-1-3:2010. The tests performed are listed in the following table 3.

Profile	e Type of test		Thickness [mm]	Span [mm]	Number of tests
	Single span test	downward		3500	12
	Internel curport test with		0.75	500	12
PCB 80 (profil 1)	$b_u = 60 \text{ mm and } b_u = 160$	downward	and 1.00	1100	16
. ,	mm			1700	16
	End support test	downward		700	16
	Single span test	downward		3000	12
			0.75	400	16
PCB 60 (profil 2)	$b_u = 60 \text{ mm and } b_u = 160$	downward	and	950	16
		mm	1.00	1500	16
	End support test	downward		650	12
ComFlor 80 (profil 3)	Single span test	downward	0.90 and 1.20	4000	8

Table 3: Tests performed

In addition, tensile tests on specimens taken from the sheeting according to EN 6892-1:2009 were performed to determine of the material properties. Furthermore the profile geometry was measured and tensile tests with embossments in the middle of the specimen were performed.

4 Test performance and results

4.1 General remarks

The test specimens were delivered June 18th, July 25th and August 06th, 2014. The tests were performed using calibrated testing machines of the "Versuchsanstalt für Stahl, Holz und Steine" of the Karlsruhe Institute of Technology (KIT). The specimens are all described by the following system:

System:	XX - X - XXX - X			
First block (two char.):	Type of test			
	PF IS ES	single span, positive flexioninternal supportend support		
Second block:	Profile	number		
(one or two char.)	1	= PCB 80 without embossments		
	1e 2 2e 3	 PCB 80 with embossments PCB 60 without embossments PCB 60 with embossments ComFlor 80 		
Third block (three char.):	Sheet	thickness		
	075 090 100 120	= 0.75 mm = 0.90 mm = 1.00 mm = 1.20 mm		
Fourth block:	Test n	umber (running)		

4.2 Single span tests

For the determination of the characteristic values of the mid-span moment resistance, single span tests for load case "gravity loading" (positive flexion) were performed with uniformly distributed load simulated by four line loads. These tests were performed using profiles of Bacacier PCB 80, PCB 60 and of Tata Steel ComFlor 80. The tests on PCB 80 and PCB 60 were performed on two sheet thicknesses ($t_N = 0.75$ mm and $t_N = 1.00$ mm) on profiles with and without embossments. The overhang of each profile was 100 mm. The load was introduced into the small flanges via transverse steel sections and timber blocks. The profiles were prevented from spreading by transverse ties. At end supports timber blocks were used to avoid web crippling. The deflections were measured continuously in mid-span and at the end supports by each two cable extension transducers. At mid span, the deflections were measured under bottom flanges of edge ribs and at end support at the upper flanges, see Figure B.2 in annex B.

The structure of the specimens and the static systems are given in annex B. The load was applied deflection-controlled with a speed of 30 mm/min. The load was measured continuously using a load cell and was plotted as load-deformation curve.

In all single span tests a non-linear load-deflection behaviour appeared until the failure load was reached. In all tests failure occurred by buckling of the upper flange near the load applying traverse. The results including preload of the single span tests are listed in the following tables. Annex B shows the experimental setup, photos from the tests and the load deflection-curve (for PF-2-100-2 see annex E, there was an error by data storage).

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]
PF-1-075-1	3500	0.738		15.08
PF-1-075-2		0.743		15.21
PF-1-075-3		0.745	0.62	15.29
PF-1-100-1		0.984	0.03	22.62
PF-1-100-2		0.985		23.32
PF-1-100-3		0.982		23.11
PF-2-075-1		0.749		10.73
PF-2-075-2		0.749		10.37
PF-2-075-3	2000	0.750	0.72	10.50
PF-2-100-1	3000	0.980	0.73	15.61
PF-2-100-2		0.980		15.58 ^{*)}
PF-2-100-3		0.979		15.39

*) maximum load from graph in annex E plus preload

Table 4: Results of single span tests for profiles without embossments

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]
PF-1e-075-1		0.736		14.53
PF-1e-075-2		0.731		14.75
PF-1e-075-3	3500	0.739	0.62	14.67
PF-1e-100-1		0.980	0.03	22.20
PF-1e-100-2		0.974		21.95
PF-1e-100-3		0.975		22.04
PF-2e-075-1		0.741		9.57
PF-2e-075-2		0.740		9.22
PF-2e-075-3	2000	0.743	0.72	9.67
PF-2e-100-1	3000	0.977	0.73	15.23
PF-2e-100-2		0.976		14.54
PF-2e-100-3		0.976		14.64

 Table 5: Results of single span tests for profiles with embossments

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]
PF-3-090-1		0.923		16.02
PF-3-090-2	4000	0.926	0.61	16.12
PF-3-090-3		0.922	0.01	15.42
PF-3-090-4		0.920		16.20
PF-3-120-1		1.216		26.28
PF-3-120-2	4000	1.215	0.61	25.86
PF-3-120-3		1.211	0.61	25.41
PF-3-120-4		1.221		24.71

Table 6: Results of single span tests for profiles with outward stiffeners

4.3 Internal support tests

Instead of extensive investigations of the intermediate support area of continuous beams, internal support tests for the load case "gravity loading" (intermediate support downward load) were performed per sheet thickness with three different spans in negative position. Loading was effected in mid-span via a transverse steel plate with a width of $b_u = 60$ mm or $b_u = 160$ mm. The tests on PCB 80 and PCB 60 were performed on two sheet thicknesses ($t_N = 0.75$ mm and $t_N = 1.00$ mm) on profiles with and without embossments. The profiles were prevented from spreading by transverse ties. At the supports the profiles were pivoted on timber blocks. The deflections were measured continuously in mid-span and near the end supports by each two cable extension transducers. For the profile PCB 80 the deflections were measured at the upper flanges, see figure C.3 in annex C. The structure of the specimens and the static system are given in annex C. The load applied deflection-controlled with a speed of 3 mm/min, after the failure load was reached the speed was increased to 10 mm/min. The load was measured continuously using a calibrated load cell.

In all internal support tests (intermediate support downward load) an approximately linear elastic load-bearing behaviour appeared until failure load was reached. Failure occurred by deformation of the webs (web-crippling). The results including preload of the internal support tests are listed in the following table.

Annex C shows the experimental setup, photos from the tests and the load deflection-curve (for IS16-2e-075-12 see annex E, there was an error by data storage).

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]
IS6-1-075-11	500	0.738		13.43
IS6-1-075-12	500	0.726		13.37
IS6-1-075-21	4400	0.727	0.16	8.56
IS6-1-075-22	1100	0.726		8.57
IS6-1-075-41	4700	0.733	0.40	6.04
IS6-1-075-42	1700	0.734	0.19	6.03
IS16-1-075-11	- 500	0.741		19.57
IS16-1-075-12		0.735	0.16	19.97
IS16-1-075-21		0.735	0.16	10.93
IS16-1-075-22	1100	0.730		11.03
IS16-1-075-41	1700	0.731	0.10	7.38
IS16-1-075-42		0.732	0.19	7.37
IS6-1-100-11	500	0.979		23.16
IS6-1-100-12	500	0.975	0.16	23.06
IS6-1-100-21	1100	0.979	0.16	14.75
IS6-1-100-22	1100	0.977		14.72
IS6-1-100-41	1700	0.974	0.10	10.30
IS6-1-100-42	1700	0.973	0.19	10.45
IS16-1-100-11	500	0.978		35.00
IS16-1-100-12	500	0.980	0.16	35.68
IS16-1-100-21	1100	0.978	0.16	19.23
IS16-1-100-22		0.979		18.87
IS16-1-100-41	1700	0.970	0.40	12.47
IS16-1-100-42	1700	0.973	0.19	12.30

 Table 7: Results of intermediate support tests for PCB 80 without embossments

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]
IS6-2-075-11	400	0.737	0.40	12.75
IS6-2-075-12		0.736	0.16	12.74
IS6-2-075-21	0.50	0.742		8.64
IS6-2-075-22	950	0.743		8.58
IS6-2-075-41	4500	0.743	0.19	5.97
IS6-2-075-42	1500	0.738		6.03
IS16-2-075-11	400	0.737	0.40	19.95
IS16-2-075-12	400	0.735	0.16	19.97
IS16-2-075-21	- 950 - 1500	0.745		11.84
IS16-2-075-22		0.742	0.40	11.84
IS16-2-075-41		0.740	0.19	7.49
IS16-2-075-42		0.741		7.48
IS6-2-100-11	400	0.981	0.40	20.34
IS6-2-100-12	400	0.975	0.16	20.65
IS6-2-100-21	050	0.975		13.48
IS6-2-100-22	950	0.972	0.40	13.55
IS6-2-100-41	1500	0.982	0.19	9.73
IS6-2-100-42	1500	0.977		9.78
IS16-2-100-11	400	0.975	0.40	33.39
IS16-2-100-12	400	0.974	0.16	33.27
IS16-2-100-21	050	0.972		18.79
IS16-2-100-22	950	0.976	0.40	18.74
IS16-2-100-41	4500	0.994	0.19	11.72
IS16-2-100-42	1500	0.978		12.01

 Table 8: Results of intermediate support tests for PCB 60 without embossments

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]
IS6-1e-075-11	500	0.737		13.60
IS6-1e-075-12		0.730	0.40	13.34
IS6-1e-075-21	1100	0.737	0.16	8.73
IS6-1e-075-22	1100	0.729		8.63
IS6-1e-075-41	1700	0.737	0.40	6.09
IS6-1e-075-42	1700	0.733	0.19	5.93
IS16-1e-075-11	500	0.738		21.18
IS16-1e-075-12	500	0.734	0.40	21.29
IS16-1e-075-21		0.729	0.16	11.54
IS16-1e-075-22	1100	0.729		11.79
IS16-1e-075-41	1700	0.731	0.40	7.19
IS16-1e-075-42		0.730	0.19	7.01
IS6-1e-100-11		0.976		24.04
IS6-1e-100-12	500	0.978	0.40	24.15
IS6-1e-100-21	1100	0.975	0.16	14.85
IS6-1e-100-22	1100	0.968		14.64
IS6-1e-100-41	1700	0.981	0.40	10.41
IS6-1e-100-42	1700	0.975	0.19	10.42
IS16-1e-100-11	500	0.978		35.84
IS16-1e-100-12	500	0.976	0.40	37.54
IS16-1e-100-21	1100	0.972	0.16	19.34
IS16-1e-100-22	11100	0.971		19.89
IS16-1e-100-41	4700	0.978	0.40	12.30
IS16-1e-100-42	1700	0.972	0.19	12.31

 Table 9: Results of intermediate support tests for PCB 80 with embossments

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]
IS6-2e-075-11	100	0.739	0.40	12.89
IS6-2e-075-12	400	0.738	0.16	12.75 ^{*)}
IS6-2e-075-21	050	0.734		8.11
IS6-2e-075-22	950	0.737	0.40	8.28
IS6-2e-075-41	1500	0.731	0.19	5.73
IS6-2e-075-42	1500	0.733		5.85
IS16-2e-075-11	400	0.732		20.76
IS16-2e-075-12	400	0.737	0.16	20.85 ^{*)}
IS16-2e-075-21	050	0.733		10.71
IS16-2e-075-22	950	0.729	0.10	10.56
IS16-2e-075-41	1500	0.736	0.19	6.88
IS16-2e-075-42	1500	0.735		7.04
IS6-2e-100-11	400	0.972	0.16	20.47
IS6-2e-100-12	400	0.970	0.16	20.61
IS6-2e-100-21	050	0.975		13.12
IS6-2e-100-22	950	0.973	0.10	13.15
IS6-2e-100-41	0.976		0.19	9.23
IS6-2e-100-42	1500	0.973		9.23
IS16-2e-100-11	00-11 0.976		0.40	33.97
IS16-2e-100-12	400	0.975	0.16	34.03
IS16-2e-100-21	050	0.972		17.54
IS16-2e-100-22	950	0.972	0.19	17.45
IS16-2e-100-41	1500	0.978		11.18
IS16-2e-100-42	1500	0.970		11.00

*) maximum load from graph in annex E plus preload

Table 10: Results of intermediate support tests for PCB 60 with embossments

4.4 End support tests

For the determination of the characteristic values of the end support resistance, end support tests for the load case "gravity loading" were performed. The tests on PCB 80 and PCB 60

were performed on two sheet thicknesses ($t_N = 0.75$ mm and $t_N = 1.00$ mm) on profiles with and without embossments. The load was applied via a transverse steel plate with b = 300 mm and timber blocks attached to the bottom flanges of the profiles. The profiles were prevented from spreading by transverse ties. At the tested end support there is a cutting edge (gradient of 1:20). At the opposite end support timber blocks were used to avoid web crippling. The deflections were measured continuously at the transverse steel plate and at the end support with the cutting edge by two cable extension transducers. At the end support the deflections were measured at the upper flanges, see Figure D.2 in annex D. The structure of the specimens and the static systems are given in annex D. The load applied deflection-controlled with a speed of 3 mm/min. The load was measured continuously using a calibrated load cell.

The results including preload of the end support tests and the failure modes are listed in the following tables. Annex D shows the experimental setup, photos from the tests and the load deflection-curve.

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]		Failure mode
ES-1-075-1		0.740		17.61	-	First load maximum: web-crippling Second load maximum: buckling of the upper flanges First load maximum: web-crippling Second load maximum: buckling of the upper flanges
ES-1-075-2		0.733	0.55	18.08	23.66	
ES-1-075-3	700	0.735		17.99	24.79	
ES-1-100-1	700	0.988		33.94	40.57	
ES-1-100-2		0.977		33.34	40.56	
ES-1-100-3		0.994		32.58	40.10	
ES-2-075-1		0.737		27.93	36.08	First load maximum: web-crippling Second load maximum: buckling of the upper flanges
ES-2-075-2		0.736		28.02	34.65	
ES-2-075-3		0.734		27.19	34.43	
ES-2-100-1	650	0.972	0.55	45.24	-	Web-crippling without
ES-2-100-2		0.967		46.02	-	flanges
ES-2-100-3		0.975		46.11	48.63	First load maximum: web-crippling Second load maximum: buckling of the upper flanges

Table 11: Results of end support tests for profiles without embossments

Test	Span [mm]	Measured thickness including zinc coating [mm]	Preload [kN]	F _{max} [kN]		Failure mode
ES-1e-075-1		0.748		18.07	21.30	First load maximum: web-crippling Second load maxi- mum: buckling of the upper flanges First load maximum: web-crippling Second load maxi- mum: buckling of the upper flanges
ES-1e-075-2		0.734	0.55	19.51	25.71	
ES-1e-075-3	700	0.735		19.03	23.31	
ES-1e-100-1	700	0.982		34.24	40.48	
ES-1e-100-2		0.996		35.09	38.63	
ES-1e-100-3		0.984		35.95	40.13	
ES-2e-075-1		0.737		32.60	-	Load maximum: combination of web- crippling and buckling of the upper flanges
ES-2e-075-2	2 3 650 1 2	0.739		34.92	-	
ES-2e-075-3		0.738	0.55	32.48	-	
ES-2e-100-1		0.972	0.00	49.02	-	
ES-2e-100-2		0.974		49.26	-	
ES-2e-100-3		0.972		48.80	-	

Table 12: Results of end support tests for profiles with embossments

4.5 Measurement of the profile geometry

The geometry of the different profiles (PCB 80, PCB 60 and ComFlor 80) for both nominal thicknesses $t_N = 0.75$ mm and $t_N = 1.00$ mm (PCB 80 and PCB 60) or $t_N = 0.90$ mm and $t_N = 1.20$ mm (ComFlor 80) were measured. The results are documented in annex F.

4.6 Coupon tests with and without embossments

For the determination of the material properties, 5 specimens per sheet (PCB 60, PCB 80 and ComFlor 80) and per thickness were worked out for tensile tests according to EN 6892-1:2009 with the specimen form 2 according to EN 6892-1:2009 table B.1. The determination of the yield strength $R_{p0.2}$ and the tensile strength R_m was based upon the measured sheet thickness exclusive of zinc coating. The results of the tensile tests are given in the following table.

For the determination of the influence of the embossment 3 tensile tests per configuration (see table 14 and 15) were performed according to EN 6892-1:2009 with the specimen form 2 according to EN 6892-1:2009 table B.1. The results of the tensile tests are given in annex G and table 14 and 15.

Profile	Nominal thickness t _N [mm]	Core thickness t _K [mm]	Yield strength R _{p0,2} [N/mm²]	Tensile strength R _m [N/mm²]	Elongation at fracture A _{L=80mm} [%]
		0.688	362	493	23.5
		0.686	363	494	25.5
	0.75	0.682	363	495	24.9
		0.682	362	495	24.1
PCB 80		0.684	364	496	24.1
(profile 1)		0.962	378	474	25.4
		0.954	363	470	26.7
	1.00	0.961	360	469	27.0
		0.964	382	481	24.3
		0.962	366	469	27.2
		0.697	342	460	23.9
	0.75	0.698	341	458	23.7
		0.699	339	456	23.2
		0.698	340	457	23.2
PCB 60 (profile 2)		0.696	342	459	23.1
	1.00	0.931	362	480	24.8
		0.932	360	480	24.9
		0.933	369	482	25.3
		0.931	365	479	25.5
		0.931	364	480	25.3
	0.00	0.871	473	563	20.8
		0.875	470	560	20.5
ComFlor 80 (profile 3)	0.90	0.879	469	559	20.3
		0.874	470	558	20.6
	1.20	1.168	467	565	20.0
		1.161	465	568	19.8
		1.162	470	569	19.8
		1.164	468	567	20.5

Table 13: Results of tensile tests

		$ \stackrel{b_{es}}{\Leftrightarrow} ^{c_e} _{\underbrace{\checkmark}h}$	e
	<	$\begin{array}{c c} & b_{ei} \\ \hline \\ & \\ \\ \\ L = 200 \text{ mm} \end{array}$	L/2 >>
Test	Core thickness t _K [mm]	Measured height h _e + t _N [mm]	Geometry according to Joris Ide [mm]
TT-e-075-0-0-0-1	0.698	-	
TT-e-075-0-0-0-2	0.701	-	
TT-e-075-0-0-0-3	0.702	-	
TT-e-075-1-1-0-1	0.701	2.14	
TT-e-075-1-1-0-2	0.701	2.12	-
TT-e-075-1-2-0-3	0.700	2.12	
TT-e-075-2-2-0-1	0.699	3.31	
TT-e-075-2-2-0-2	0.705	3.25	-
TT-e-075-2-2-0-3	0.702	3.30	
TT-e-075-3-3-0-1	0.694	4.00	8
TT-e-075-3-3-0-2	0.698	3.96	3 25
TT-e-075-3-3-0-3	0.679	3.94	
TT-e-075-4-4-0-1	0.701	4.85	10
TT-e-075-4-4-0-2	0.700	4.85	
TT-e-075-4-4-0-3	0.696	4.91	
TT-e-075-1-1-10-1	0.693	2.40	11,5 2
TT-e-075-1-1-10-2	0.699	2.41	
TT-e-075-1-1-10-3	0.695	2.40	
TT-e-075-2-2-10-1	0.699	3.39	11,85 2
TT-e-075-2-2-10-2	0.699	3.35	
TT-e-075-2-2-10-3	0.700	3.34	
TT-e-075-3-3-10-1	0.698	3.57	12,3 2,1
TT-e-075-3-3-10-2	0.698	3.57	
TT-e-075-3-3-10-3	0.702	3.56	
TT-e-075-4-4-10-1	0.691	5.06	13,2 3
TT-e-075-4-4-10-2	0.699	5.11	
TT-e-075-4-4-10-3	0.698	5.10	

Table 14: Results of tensile tests with embossments, nominal thickness t_N = 0.75 mm

		$\left \stackrel{b_{es}}{\leftrightarrow}\right ^{c_e} \left \stackrel{\leftarrow}{}{}_{h}\right $	e
	k	$\begin{vmatrix} b_{ei} \\ b_{ei} \end{vmatrix}$ $L = 200 \text{ mm}$	L/2
Test	Core thickness t _K [mm]	Measured height h _e + t _N [mm]	Geometry according to Joris Ide [mm]
TT-e-100-0-0-0-1	0.698	-	
TT-e-100-0-0-0-2	0.701	-	
TT-e-100-0-0-0-3	0.702	-	
TT-e-100-1-1-0-1	0.935	2.31	
TT-e-100-1-1-0-2	0.928	2.31	-
TT-e-100-1-2-0-3	0.938	2.33	
TT-e-100-2-2-0-1	0.930	3.24	
TT-e-100-2-2-0-2	0.933	3.25	-
TT-e-100-2-2-0-3	0.935	3.24	
TT-e-100-3-3-0-1	0.694	4.00	8
TT-e-100-3-3-0-2	0.698	3.96	
TT-e-100-3-3-0-3	0.679	3.94	
TT-e-100-4-4-0-1	0.701	4.85	10,3
TT-e-100-4-4-0-2	0.700	4.85	
TT-e-100-4-4-0-3	0.696	4.91	
TT-e-100-1-1-10-1	0.693	2.40	11,7 2
TT-e-100-1-1-10-2	0.699	2.41	
TT-e-100-1-1-10-3	0.695	2.40	
TT-e-100-2-2-10-1	0.699	3.39	12,5 2,5
TT-e-100-2-2-10-2	0.699 3.35		
TT-e-100-2-2-10-3	0.700	3.34	
TT-e-100-3-3-10-1	0.698	3.57	12,4 2,5
TT-e-100-3-3-10-2	0.698	3.57	
TT-e-100-3-3-10-3	0.702	3.56	
TT-e-100-4-4-10-1	0.691	5.06	13 2,4
TT-e-100-4-4-10-2	0.699	5.11	
TT-e-100-4-4-10-3	0.698	5.10	

Table 15: Results of tensile tests with embossments, nominal thickness t_N = 1.00 mm

5 Summary

For the research project "Guidelines and Recommendations for Integrating Specific Profiled Steels sheets in the Eurocodes (GRISPE)" co-funded under the Research Fund for Coal and Steel the "Versuchsanstalt für Stahl, Holz und Steine" of the Karlsruhe Institute of Technology (KIT) made experimental investigations according to EN 1993-1-3:2010 on the load-bearing capacity of steel trapezoidal sheeting with and without embossments and outward stiffeners. Also tensile tests according to EN 6892.1:2009 and profile geometry measurements were accomplished.

In section 2 the trapezoidal sheeting are described with regard to application, geometry and material. Section 3 reflects the scope of testing. The description of the experimental set-up and the test performance and the documentation of the test results are included in section 4.

Annex A: Object of testing

Figure A.1: Cross-section of PCB 80

Figure A.2: Cross-section of PCB 60

Figure A.3: Cross-section of ComFlor 80

Cross section at end support

Cross section in the middle of the span Cross section at the transverse

Figure B.1: Schematic test setup

Figure B.2: Test setup (exemplary for PCB 80, $t_N = 1.00$ mm without embossments)

Figure B.3: Test setup (exemplary for PCB 80, $t_N = 1.00$ mm without embossments)

Figure B.4: Test setup (exemplary for ComFlor80, $t_N = 0.90$ with outward stiffeners)

Figure B.5: Failure mode (PCB 80 $t_N = 0.75$ mm without embossments)

Figure B.6: Failure mode (PCB 80, $t_N = 0.75$ mm with embossments)

Figure B.7: Failure mode (PCB 60, $t_N = 0.75$ mm without embossments)

Figure B.8: Failure mode (PCB 60, $t_N = 0.75$ mm with embossments)

Figure B.9: Failure mode (ComFlor 80, $t_N = 0.90$ mm with outward stiffeners)

Load-deflection curves:

26

PF-2-100-2: error in data storage (see annex E for a copy of the load-deflection curve)

Annex C: Intermediate support test with downward load

Figure C.1: Schematic test setup

Figure C.2: Test setup (exemplary for PCB 80, $b_u = 60 \text{ mm}$, $t_N = 0.75 \text{ mm}$ without embossments)

Figure C.3: Test setup (exemplary for PCB 60, $b_u = 60 \text{ mm}$, $t_N = 0.75 \text{ mm}$ without embossments)

Figure C.4: Failure mode (exemplary for PCB 80, $b_u = 60 \text{ mm}$, $t_N = 0.75 \text{ without emboss-ments}$)

Figure C.5: Failure mode (exemplary for PCB 80, $b_u = 160 \text{ mm}$, $t_N = 1.00 \text{ with embossments}$)

Figure C.6: Failure mode (exemplary for PCB 60, $b_u = 60 \text{ mm}$, $t_N = 0.75$ without embossments)

Figure C.7: Failure mode (exemplary for PCB 60, $b_u = 160 \text{ mm}$, $t_N = 0.75 \text{ with embossments}$)

Load-deflection curves:

IS16-2e-075-12: error in data storage (see annex E for a copy of the load-deflection curve)

displacement [mm]

Annex D: End support test with downward load

Figure D.1: Schematic test setup

Figure D.2: Side view of the test setup (exemplary for PCB 80, $t_N = 0.75$ mm without embossments)

Figure D.3: View of the test setup (exemplary for PCB 80, $t_N = 0.75$ mm without embossments)

Figure D.4: Web-crippling (PCB 80 $t_N = 0.75$ mm without embossments)

Figure D.5: Deformation of the profile after the test (PCB 80 $t_N = 0.75$ mm without embossments)

Figure D.6: Web-crippling (PCB 80 $t_N = 0.75$ mm with embossments)

Figure D.7: Deformation of the webs during the load increase after the first peak (PCB 80, $t_N = 0.75$ mm with embossments)

Figure D.8: Buckling of the upper flanges (PCB 80, $t_N = 0.75$ mm with embossments)

Figure D.9: Deformation at the end of the test (PCB 80, $t_N = 0.75$ mm with embossments)

Figure D.10: Deformation of the profile after the test (PCB 80 $t_N = 0.75$ mm with embossments)

Figure D.11: Web-crippling (PCB 60 $t_N = 0.75$ mm without embossments)

Figure D.12: Buckling of the upper flanges (PCB 60, $t_N = 0.75$ mm without embossments)

Figure D.13: Web-crippling (PCB 60 t_N = 1.00 mm without embossments)

Figure D.14: No buckling of the upper flanges (PCB 60, $t_N = 1.00$ mm without embossments, test 1 and test 2)

Figure D.15: Buckling of the upper flanges (PCB 60, $t_N = 1.00$ mm without embossments, test 3)

Figure D.16: Web-crippling (PCB 60 $t_N = 0.75$ mm with embossments)

Figure D.17: Buckling of the upper flanges (PCB 60, $t_N = 0.75$ mm with embossments)

Load-deflection curves:

Annex E: Copies of the load-deflection curves

Annex F: Measurement of the profile geometry

	PCB 80 t _N = 0.75											
	1st Rib 2nd Rib		3rd	Rib	1st Rib		2nd Rib		3rd Rib			
Thickness t _N	0,74		0,74		0,74		0,77		0,78		0,76	
Depth of profile h	77	7,8	77,0		78,1		77,3		78,1		77,0	
Depth of stiff. valley hr ₃ /hr ₄	1,7	-	0,2	-	1,6	-	0,3	-	0,1	-	0,3	-
Depth of stiff. crown h _{r1} /h _{r2}	6,2	-	6,7	-	6,7	-	5,6	-	5,5	-	6,1	-
Widths of crown b _o	78,0		77,0		78,0		78,5		78,0		78,0	
Position of stiff. crown b_{k1}/b_{k2}	23,5	-	24,0	-	23,5	-	23,5	-	23,5	-	24,0	-
Position of stiff. valley b_{k3}/b_{k4}	17,5	17,5	17,5	17,5	17,5	17,5	14,0	14,5	14,0	14,0	14,5	14,0
Widths of valley b _u	55	5,0	54,0		55,0		55,0		54,5		54,5	
Radius of bends r _o	2	,5	3,0		Ra	Radius of bend		bends r _u		3,0/3,5		,0
Ancle of embossment α_e		-	-		-		45,0		45,0		45,0	
Widths of embossment h _{eb}		-	-		-		8,1		7,9		8,0	
Depth of embossment veb		-		-	-		1,8		1,7		1,9	

	PCB 80 t _N = 1.00											
	1st	Rib	o 2nd Rib		3rd	I Rib 1s		Rib	2nd Rib		3rd Rib	
Thickness t _N	0,98		0,98		0,98		0,97		0,99		1,00	
Depth of profile h	78	3,2	78,0		78,0		77,2		77,7		77,6	
Depth of stiff. valley hr ₃ /hr ₄	1,3	-	0,1	-	1,4	-	0,5	-	0,1	-	0,4	-
Depth of stiff. crown h _{r1} /h _{r2}	5,2	-	5,2	-	5,4	-	6,0	-	5,4	-	5,5	-
Widths of crown b_o	78,0		77,5		78,0		79,5		78,0		79,0	
Position of stiff. crown b_{k1}/b_{k2}	23,0	-	22,5	-	23,0	-	23,5	-	23,0	-	23,5	-
Position of stiff. valley b_{k3}/b_{k4}	15,5	14,5	15,0	14,5	15,5	14,5	14,5	14,5	14,5	14,5	14,0	14,5
Widths of valley b _u	55	5,0	55	5,0	54,0		55,0		55,0		54,5	
Radius of bends r _o	3	,0	2,5		Radius of b		f bends r _u		3,0		3,0/3,5	
Ancle of embossment α_e		-	-		-		44,0		46,0		46,0	
Widths of embossment h _{eb}		-	-		-		7,7		8,0		7,9	
Depth of embossment v _{eb}		-		-		-	1,8		1,7		1,9	

	PCB 60 t _N = 0.75											
	1st	Rib	2nd Rib		3rd	Rib	1st Rib		2nd Rib		3rd Rib	
Thickness t _N	0,72		0,73		0,73		0,76		0,74		0,74	
Depth of profile h	60),2	58,3		59,6		60,1		58,7		60,6	
Depth of stiff. valley hr ₃ /hr ₄	1,1	-	1,3	-	0,7	-	0,6	-	1,4	-	1,4	-
Depth of stiff. crown h _{r1} /h _{r2}	1,7	2,8	2,0	2,5	2,3	2,3	2,5	2,3	2,6	2,1	-	-
Widths of crown b_o	10	7,0	107,0		107,0		106,0		106,0		-	
Position of stiff. crown b_{k1}/b_{k2}	21,5	26,0	20,0	25,0	20,0	25,0	21,0	25,5	20,0	25,5	-	-
Position of stiff. valley b_{k3}/b_{k4}	25,0	15,5	21,0	18,5	25,0	15,5	20,0		21,0		24,5	17,5
Widths of valley b _u	61	,0	60),0	60,5		61,0		60,5		61,5	
Radius of bends r _o	5,5	/6,0	5	,0	Radius of		f bends r _u		6,0		5,5	
Ancle of embossment α_e		-		-		-	45,0		45,0		45,0	
Widths of embossment h _{eb}		-	-		-		12,8		12,9		13,1	
Depth of embossment v _{eb}		-	-			-	1,9		2,0		2,1	
height of embossment he		-	-		-		42,0		42,4		42,3	
distance of the embossments b_e		-		-	-		22,2		22,6		22,8	

	PCB 60 t _N = 1.00												
	1st	Rib	2nd	Rib	3rd	Rib	1st Rib		2nd Rib		3rd Rib		
Thickness t _N	0,	0,97 0,96		96	0,96		1		0,98		0,97		
Depth of profile h	60),2	58	58,7		60,5		58,8		59,1		9,8	
Depth of stiff. valley hr ₃ /hr ₄	0,7	-	1,1 -		1,2	-	1,4	-	1,2	-	1,4	-	
Depth of stiff. crown h _{r1} /h _{r2}	2,2	2,3	2,6	2,0	-	-	-	-	1,9	2,6	2,4	2,1	
Widths of crown b_o	10	7,0	107,0		-		-		105,0		106,0		
Position of stiff. crown b_{k1}/b_{k2}	-	-	21,0	24,0	21,5	23,5	-	-	19,5	26,0	20,0	24,5	
Position of stiff. valley b_{k3}/b_{k4}	19,0	21,0	18,0	23,0	16,0	25,0	-	-	-	-	-	-	
Widths of valley b _u	61	,0	60),5	61,0		61,5		61,0		62,0		
Radius of bends r_o	6,0	/6,5	6,0	/6,5	Radius of bends ru			r _u	5,5/6,0		5,5		
Ancle of embossment α_e		-		-		-		44,0		44,0		I,0	
Widths of embossment h _{eb}		-	-			-	12,8		12,9		13,1		
Depth of embossment veb		-	-		-		2,0		1,7		2,0		
height of embossment h _e		-		-		-	42,0		42,2		42,3		
distance of the embossments be		-		-	-		22,2		22,6		22,8		

	ComF	lor 80 1	N = 0.9	90 mm	ComFlor 80 $t_N = 1.20$ mm				
	1st	Rib	2nd	Rib	1st Rib		2nd	Rib	
Thickness t _N	0,	93	0,	94	1,22		1,	21	
Depth of profile h		96	6,2			98	3,7		
Depth of stiffeners h _{r1} /h _{r2}	3,9	2,9	2,7	2,9	3,1	2,9	2,7	2,6	
Widths of crown b _o	14	2,0	14	1,5	14	2,0	14	3,0	
Position of stiffeners b_{k1}/b_{k2}	70,0	72,5	66,0	72,5	72,0	69,0	72,0	70,5	
Position of stiffeners b_{k3}/b_{k4}	-	-	24,0	26,5	-	-	24,0	26,0	
embossment diameter d _n	14,1	14,6	13,8	13,3	13,2	14,6	14,1	14,6	
embossment pitch u _x	35,3	34,7	35,5	35,1	35,2	35,7	34,8	35,1	
Offset v	18,0	17,5	16,9	19,4	18,9	20,2	18,3	18,6	
Row spacing u _y	29,3	29,7	29,2	29,5	30,4	30,9	30,0	30,2	
Edge spacing e _{so1} /e _{so1}	25,5	28,1	28,2	24,8	32,0	27,0	29,0	26,5	
numbers of rows (transv.)		2	,0			2	,0		
numbers of rows/m (long.)		28	3,0		28,0				
Widths of valley b _u		12	0,0		120,5				
Depth of stiffeners h _{r3} /h _{r4}	15,5	8,1	16,0	-	14,2	8,3	16,4	-	
Long. edge upstand h _u		17	7,5		17,5				
width of crown b _{ou}	18	6,0	18	4,0	18	4,5	189,0		
Radius of bends r _o	25,0	25,0	Ra	adius o	f bends	r _u	5,5	4,5	

